Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{22\times \frac{1}{20}}{22\times \frac{5}{100}+21\times \frac{0.25}{100}}\times \frac{22+21}{22\times \frac{5}{100}+21\times 0.25^{2}}
Reduce the fraction \frac{5}{100} to lowest terms by extracting and canceling out 5.
\frac{\frac{22}{20}}{22\times \frac{5}{100}+21\times \frac{0.25}{100}}\times \frac{22+21}{22\times \frac{5}{100}+21\times 0.25^{2}}
Multiply 22 and \frac{1}{20} to get \frac{22}{20}.
\frac{\frac{11}{10}}{22\times \frac{5}{100}+21\times \frac{0.25}{100}}\times \frac{22+21}{22\times \frac{5}{100}+21\times 0.25^{2}}
Reduce the fraction \frac{22}{20} to lowest terms by extracting and canceling out 2.
\frac{\frac{11}{10}}{22\times \frac{1}{20}+21\times \frac{0.25}{100}}\times \frac{22+21}{22\times \frac{5}{100}+21\times 0.25^{2}}
Reduce the fraction \frac{5}{100} to lowest terms by extracting and canceling out 5.
\frac{\frac{11}{10}}{\frac{22}{20}+21\times \frac{0.25}{100}}\times \frac{22+21}{22\times \frac{5}{100}+21\times 0.25^{2}}
Multiply 22 and \frac{1}{20} to get \frac{22}{20}.
\frac{\frac{11}{10}}{\frac{11}{10}+21\times \frac{0.25}{100}}\times \frac{22+21}{22\times \frac{5}{100}+21\times 0.25^{2}}
Reduce the fraction \frac{22}{20} to lowest terms by extracting and canceling out 2.
\frac{\frac{11}{10}}{\frac{11}{10}+21\times \frac{25}{10000}}\times \frac{22+21}{22\times \frac{5}{100}+21\times 0.25^{2}}
Expand \frac{0.25}{100} by multiplying both numerator and the denominator by 100.
\frac{\frac{11}{10}}{\frac{11}{10}+21\times \frac{1}{400}}\times \frac{22+21}{22\times \frac{5}{100}+21\times 0.25^{2}}
Reduce the fraction \frac{25}{10000} to lowest terms by extracting and canceling out 25.
\frac{\frac{11}{10}}{\frac{11}{10}+\frac{21}{400}}\times \frac{22+21}{22\times \frac{5}{100}+21\times 0.25^{2}}
Multiply 21 and \frac{1}{400} to get \frac{21}{400}.
\frac{\frac{11}{10}}{\frac{440}{400}+\frac{21}{400}}\times \frac{22+21}{22\times \frac{5}{100}+21\times 0.25^{2}}
Least common multiple of 10 and 400 is 400. Convert \frac{11}{10} and \frac{21}{400} to fractions with denominator 400.
\frac{\frac{11}{10}}{\frac{440+21}{400}}\times \frac{22+21}{22\times \frac{5}{100}+21\times 0.25^{2}}
Since \frac{440}{400} and \frac{21}{400} have the same denominator, add them by adding their numerators.
\frac{\frac{11}{10}}{\frac{461}{400}}\times \frac{22+21}{22\times \frac{5}{100}+21\times 0.25^{2}}
Add 440 and 21 to get 461.
\frac{11}{10}\times \frac{400}{461}\times \frac{22+21}{22\times \frac{5}{100}+21\times 0.25^{2}}
Divide \frac{11}{10} by \frac{461}{400} by multiplying \frac{11}{10} by the reciprocal of \frac{461}{400}.
\frac{11\times 400}{10\times 461}\times \frac{22+21}{22\times \frac{5}{100}+21\times 0.25^{2}}
Multiply \frac{11}{10} times \frac{400}{461} by multiplying numerator times numerator and denominator times denominator.
\frac{4400}{4610}\times \frac{22+21}{22\times \frac{5}{100}+21\times 0.25^{2}}
Do the multiplications in the fraction \frac{11\times 400}{10\times 461}.
\frac{440}{461}\times \frac{22+21}{22\times \frac{5}{100}+21\times 0.25^{2}}
Reduce the fraction \frac{4400}{4610} to lowest terms by extracting and canceling out 10.
\frac{440}{461}\times \frac{43}{22\times \frac{5}{100}+21\times 0.25^{2}}
Add 22 and 21 to get 43.
\frac{440}{461}\times \frac{43}{22\times \frac{1}{20}+21\times 0.25^{2}}
Reduce the fraction \frac{5}{100} to lowest terms by extracting and canceling out 5.
\frac{440}{461}\times \frac{43}{\frac{22}{20}+21\times 0.25^{2}}
Multiply 22 and \frac{1}{20} to get \frac{22}{20}.
\frac{440}{461}\times \frac{43}{\frac{11}{10}+21\times 0.25^{2}}
Reduce the fraction \frac{22}{20} to lowest terms by extracting and canceling out 2.
\frac{440}{461}\times \frac{43}{\frac{11}{10}+21\times 0.0625}
Calculate 0.25 to the power of 2 and get 0.0625.
\frac{440}{461}\times \frac{43}{\frac{11}{10}+1.3125}
Multiply 21 and 0.0625 to get 1.3125.
\frac{440}{461}\times \frac{43}{\frac{11}{10}+\frac{21}{16}}
Convert decimal number 1.3125 to fraction \frac{13125}{10000}. Reduce the fraction \frac{13125}{10000} to lowest terms by extracting and canceling out 625.
\frac{440}{461}\times \frac{43}{\frac{88}{80}+\frac{105}{80}}
Least common multiple of 10 and 16 is 80. Convert \frac{11}{10} and \frac{21}{16} to fractions with denominator 80.
\frac{440}{461}\times \frac{43}{\frac{88+105}{80}}
Since \frac{88}{80} and \frac{105}{80} have the same denominator, add them by adding their numerators.
\frac{440}{461}\times \frac{43}{\frac{193}{80}}
Add 88 and 105 to get 193.
\frac{440}{461}\times 43\times \frac{80}{193}
Divide 43 by \frac{193}{80} by multiplying 43 by the reciprocal of \frac{193}{80}.
\frac{440}{461}\times \frac{43\times 80}{193}
Express 43\times \frac{80}{193} as a single fraction.
\frac{440}{461}\times \frac{3440}{193}
Multiply 43 and 80 to get 3440.
\frac{440\times 3440}{461\times 193}
Multiply \frac{440}{461} times \frac{3440}{193} by multiplying numerator times numerator and denominator times denominator.
\frac{1513600}{88973}
Do the multiplications in the fraction \frac{440\times 3440}{461\times 193}.