\frac { 22 \times 5 \% } { 22 \times 5 \% + 21 \times 0.25 \% } \times \frac { 22 + 21 } { 22 \times 5 \% + 21 \times 0.25 ^ { 2 } }
Evaluate
\frac{1513600}{88973}\approx 17.011902487
Factor
\frac{11 \cdot 43 \cdot 2 ^ {7} \cdot 5 ^ {2}}{193 \cdot 461} = 17\frac{1059}{88973} = 17.01190248727142
Share
Copied to clipboard
\frac{22\times \frac{1}{20}}{22\times \frac{5}{100}+21\times \frac{0.25}{100}}\times \frac{22+21}{22\times \frac{5}{100}+21\times 0.25^{2}}
Reduce the fraction \frac{5}{100} to lowest terms by extracting and canceling out 5.
\frac{\frac{22}{20}}{22\times \frac{5}{100}+21\times \frac{0.25}{100}}\times \frac{22+21}{22\times \frac{5}{100}+21\times 0.25^{2}}
Multiply 22 and \frac{1}{20} to get \frac{22}{20}.
\frac{\frac{11}{10}}{22\times \frac{5}{100}+21\times \frac{0.25}{100}}\times \frac{22+21}{22\times \frac{5}{100}+21\times 0.25^{2}}
Reduce the fraction \frac{22}{20} to lowest terms by extracting and canceling out 2.
\frac{\frac{11}{10}}{22\times \frac{1}{20}+21\times \frac{0.25}{100}}\times \frac{22+21}{22\times \frac{5}{100}+21\times 0.25^{2}}
Reduce the fraction \frac{5}{100} to lowest terms by extracting and canceling out 5.
\frac{\frac{11}{10}}{\frac{22}{20}+21\times \frac{0.25}{100}}\times \frac{22+21}{22\times \frac{5}{100}+21\times 0.25^{2}}
Multiply 22 and \frac{1}{20} to get \frac{22}{20}.
\frac{\frac{11}{10}}{\frac{11}{10}+21\times \frac{0.25}{100}}\times \frac{22+21}{22\times \frac{5}{100}+21\times 0.25^{2}}
Reduce the fraction \frac{22}{20} to lowest terms by extracting and canceling out 2.
\frac{\frac{11}{10}}{\frac{11}{10}+21\times \frac{25}{10000}}\times \frac{22+21}{22\times \frac{5}{100}+21\times 0.25^{2}}
Expand \frac{0.25}{100} by multiplying both numerator and the denominator by 100.
\frac{\frac{11}{10}}{\frac{11}{10}+21\times \frac{1}{400}}\times \frac{22+21}{22\times \frac{5}{100}+21\times 0.25^{2}}
Reduce the fraction \frac{25}{10000} to lowest terms by extracting and canceling out 25.
\frac{\frac{11}{10}}{\frac{11}{10}+\frac{21}{400}}\times \frac{22+21}{22\times \frac{5}{100}+21\times 0.25^{2}}
Multiply 21 and \frac{1}{400} to get \frac{21}{400}.
\frac{\frac{11}{10}}{\frac{440}{400}+\frac{21}{400}}\times \frac{22+21}{22\times \frac{5}{100}+21\times 0.25^{2}}
Least common multiple of 10 and 400 is 400. Convert \frac{11}{10} and \frac{21}{400} to fractions with denominator 400.
\frac{\frac{11}{10}}{\frac{440+21}{400}}\times \frac{22+21}{22\times \frac{5}{100}+21\times 0.25^{2}}
Since \frac{440}{400} and \frac{21}{400} have the same denominator, add them by adding their numerators.
\frac{\frac{11}{10}}{\frac{461}{400}}\times \frac{22+21}{22\times \frac{5}{100}+21\times 0.25^{2}}
Add 440 and 21 to get 461.
\frac{11}{10}\times \frac{400}{461}\times \frac{22+21}{22\times \frac{5}{100}+21\times 0.25^{2}}
Divide \frac{11}{10} by \frac{461}{400} by multiplying \frac{11}{10} by the reciprocal of \frac{461}{400}.
\frac{11\times 400}{10\times 461}\times \frac{22+21}{22\times \frac{5}{100}+21\times 0.25^{2}}
Multiply \frac{11}{10} times \frac{400}{461} by multiplying numerator times numerator and denominator times denominator.
\frac{4400}{4610}\times \frac{22+21}{22\times \frac{5}{100}+21\times 0.25^{2}}
Do the multiplications in the fraction \frac{11\times 400}{10\times 461}.
\frac{440}{461}\times \frac{22+21}{22\times \frac{5}{100}+21\times 0.25^{2}}
Reduce the fraction \frac{4400}{4610} to lowest terms by extracting and canceling out 10.
\frac{440}{461}\times \frac{43}{22\times \frac{5}{100}+21\times 0.25^{2}}
Add 22 and 21 to get 43.
\frac{440}{461}\times \frac{43}{22\times \frac{1}{20}+21\times 0.25^{2}}
Reduce the fraction \frac{5}{100} to lowest terms by extracting and canceling out 5.
\frac{440}{461}\times \frac{43}{\frac{22}{20}+21\times 0.25^{2}}
Multiply 22 and \frac{1}{20} to get \frac{22}{20}.
\frac{440}{461}\times \frac{43}{\frac{11}{10}+21\times 0.25^{2}}
Reduce the fraction \frac{22}{20} to lowest terms by extracting and canceling out 2.
\frac{440}{461}\times \frac{43}{\frac{11}{10}+21\times 0.0625}
Calculate 0.25 to the power of 2 and get 0.0625.
\frac{440}{461}\times \frac{43}{\frac{11}{10}+1.3125}
Multiply 21 and 0.0625 to get 1.3125.
\frac{440}{461}\times \frac{43}{\frac{11}{10}+\frac{21}{16}}
Convert decimal number 1.3125 to fraction \frac{13125}{10000}. Reduce the fraction \frac{13125}{10000} to lowest terms by extracting and canceling out 625.
\frac{440}{461}\times \frac{43}{\frac{88}{80}+\frac{105}{80}}
Least common multiple of 10 and 16 is 80. Convert \frac{11}{10} and \frac{21}{16} to fractions with denominator 80.
\frac{440}{461}\times \frac{43}{\frac{88+105}{80}}
Since \frac{88}{80} and \frac{105}{80} have the same denominator, add them by adding their numerators.
\frac{440}{461}\times \frac{43}{\frac{193}{80}}
Add 88 and 105 to get 193.
\frac{440}{461}\times 43\times \frac{80}{193}
Divide 43 by \frac{193}{80} by multiplying 43 by the reciprocal of \frac{193}{80}.
\frac{440}{461}\times \frac{43\times 80}{193}
Express 43\times \frac{80}{193} as a single fraction.
\frac{440}{461}\times \frac{3440}{193}
Multiply 43 and 80 to get 3440.
\frac{440\times 3440}{461\times 193}
Multiply \frac{440}{461} times \frac{3440}{193} by multiplying numerator times numerator and denominator times denominator.
\frac{1513600}{88973}
Do the multiplications in the fraction \frac{440\times 3440}{461\times 193}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}