Evaluate
\frac{162360}{49}\approx 3313.469387755
Factor
\frac{2 ^ {3} \cdot 3 ^ {2} \cdot 5 \cdot 11 \cdot 41}{7 ^ {2}} = 3313\frac{23}{49} = 3313.469387755102
Share
Copied to clipboard
\frac{396\times 18\times 3+2\times \frac{22}{7}\times 18\times 4\times 4}{7}
Multiply 22 and 18 to get 396.
\frac{7128\times 3+2\times \frac{22}{7}\times 18\times 4\times 4}{7}
Multiply 396 and 18 to get 7128.
\frac{21384+2\times \frac{22}{7}\times 18\times 4\times 4}{7}
Multiply 7128 and 3 to get 21384.
\frac{21384+\frac{2\times 22}{7}\times 18\times 4\times 4}{7}
Express 2\times \frac{22}{7} as a single fraction.
\frac{21384+\frac{44}{7}\times 18\times 4\times 4}{7}
Multiply 2 and 22 to get 44.
\frac{21384+\frac{44\times 18}{7}\times 4\times 4}{7}
Express \frac{44}{7}\times 18 as a single fraction.
\frac{21384+\frac{792}{7}\times 4\times 4}{7}
Multiply 44 and 18 to get 792.
\frac{21384+\frac{792\times 4}{7}\times 4}{7}
Express \frac{792}{7}\times 4 as a single fraction.
\frac{21384+\frac{3168}{7}\times 4}{7}
Multiply 792 and 4 to get 3168.
\frac{21384+\frac{3168\times 4}{7}}{7}
Express \frac{3168}{7}\times 4 as a single fraction.
\frac{21384+\frac{12672}{7}}{7}
Multiply 3168 and 4 to get 12672.
\frac{\frac{149688}{7}+\frac{12672}{7}}{7}
Convert 21384 to fraction \frac{149688}{7}.
\frac{\frac{149688+12672}{7}}{7}
Since \frac{149688}{7} and \frac{12672}{7} have the same denominator, add them by adding their numerators.
\frac{\frac{162360}{7}}{7}
Add 149688 and 12672 to get 162360.
\frac{162360}{7\times 7}
Express \frac{\frac{162360}{7}}{7} as a single fraction.
\frac{162360}{49}
Multiply 7 and 7 to get 49.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}