Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{168}{4-2i}
Add 22 and 146 to get 168.
\frac{168\left(4+2i\right)}{\left(4-2i\right)\left(4+2i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 4+2i.
\frac{168\left(4+2i\right)}{4^{2}-2^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{168\left(4+2i\right)}{20}
By definition, i^{2} is -1. Calculate the denominator.
\frac{168\times 4+168\times \left(2i\right)}{20}
Multiply 168 times 4+2i.
\frac{672+336i}{20}
Do the multiplications in 168\times 4+168\times \left(2i\right).
\frac{168}{5}+\frac{84}{5}i
Divide 672+336i by 20 to get \frac{168}{5}+\frac{84}{5}i.
Re(\frac{168}{4-2i})
Add 22 and 146 to get 168.
Re(\frac{168\left(4+2i\right)}{\left(4-2i\right)\left(4+2i\right)})
Multiply both numerator and denominator of \frac{168}{4-2i} by the complex conjugate of the denominator, 4+2i.
Re(\frac{168\left(4+2i\right)}{4^{2}-2^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{168\left(4+2i\right)}{20})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{168\times 4+168\times \left(2i\right)}{20})
Multiply 168 times 4+2i.
Re(\frac{672+336i}{20})
Do the multiplications in 168\times 4+168\times \left(2i\right).
Re(\frac{168}{5}+\frac{84}{5}i)
Divide 672+336i by 20 to get \frac{168}{5}+\frac{84}{5}i.
\frac{168}{5}
The real part of \frac{168}{5}+\frac{84}{5}i is \frac{168}{5}.