Solve for x
x=\frac{13-\sqrt{1273}}{40}\approx -0.566978139
x = \frac{\sqrt{1273} + 13}{40} \approx 1.216978139
Graph
Share
Copied to clipboard
216=12\times 5x\left(5x-3\right)+\left(5x-3\right)\left(-3\right)
Variable x cannot be equal to \frac{3}{5} since division by zero is not defined. Multiply both sides of the equation by 5x-3.
216=60x\left(5x-3\right)+\left(5x-3\right)\left(-3\right)
Multiply 12 and 5 to get 60.
216=300x^{2}-180x+\left(5x-3\right)\left(-3\right)
Use the distributive property to multiply 60x by 5x-3.
216=300x^{2}-180x-15x+9
Use the distributive property to multiply 5x-3 by -3.
216=300x^{2}-195x+9
Combine -180x and -15x to get -195x.
300x^{2}-195x+9=216
Swap sides so that all variable terms are on the left hand side.
300x^{2}-195x+9-216=0
Subtract 216 from both sides.
300x^{2}-195x-207=0
Subtract 216 from 9 to get -207.
x=\frac{-\left(-195\right)±\sqrt{\left(-195\right)^{2}-4\times 300\left(-207\right)}}{2\times 300}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 300 for a, -195 for b, and -207 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-195\right)±\sqrt{38025-4\times 300\left(-207\right)}}{2\times 300}
Square -195.
x=\frac{-\left(-195\right)±\sqrt{38025-1200\left(-207\right)}}{2\times 300}
Multiply -4 times 300.
x=\frac{-\left(-195\right)±\sqrt{38025+248400}}{2\times 300}
Multiply -1200 times -207.
x=\frac{-\left(-195\right)±\sqrt{286425}}{2\times 300}
Add 38025 to 248400.
x=\frac{-\left(-195\right)±15\sqrt{1273}}{2\times 300}
Take the square root of 286425.
x=\frac{195±15\sqrt{1273}}{2\times 300}
The opposite of -195 is 195.
x=\frac{195±15\sqrt{1273}}{600}
Multiply 2 times 300.
x=\frac{15\sqrt{1273}+195}{600}
Now solve the equation x=\frac{195±15\sqrt{1273}}{600} when ± is plus. Add 195 to 15\sqrt{1273}.
x=\frac{\sqrt{1273}+13}{40}
Divide 195+15\sqrt{1273} by 600.
x=\frac{195-15\sqrt{1273}}{600}
Now solve the equation x=\frac{195±15\sqrt{1273}}{600} when ± is minus. Subtract 15\sqrt{1273} from 195.
x=\frac{13-\sqrt{1273}}{40}
Divide 195-15\sqrt{1273} by 600.
x=\frac{\sqrt{1273}+13}{40} x=\frac{13-\sqrt{1273}}{40}
The equation is now solved.
216=12\times 5x\left(5x-3\right)+\left(5x-3\right)\left(-3\right)
Variable x cannot be equal to \frac{3}{5} since division by zero is not defined. Multiply both sides of the equation by 5x-3.
216=60x\left(5x-3\right)+\left(5x-3\right)\left(-3\right)
Multiply 12 and 5 to get 60.
216=300x^{2}-180x+\left(5x-3\right)\left(-3\right)
Use the distributive property to multiply 60x by 5x-3.
216=300x^{2}-180x-15x+9
Use the distributive property to multiply 5x-3 by -3.
216=300x^{2}-195x+9
Combine -180x and -15x to get -195x.
300x^{2}-195x+9=216
Swap sides so that all variable terms are on the left hand side.
300x^{2}-195x=216-9
Subtract 9 from both sides.
300x^{2}-195x=207
Subtract 9 from 216 to get 207.
\frac{300x^{2}-195x}{300}=\frac{207}{300}
Divide both sides by 300.
x^{2}+\left(-\frac{195}{300}\right)x=\frac{207}{300}
Dividing by 300 undoes the multiplication by 300.
x^{2}-\frac{13}{20}x=\frac{207}{300}
Reduce the fraction \frac{-195}{300} to lowest terms by extracting and canceling out 15.
x^{2}-\frac{13}{20}x=\frac{69}{100}
Reduce the fraction \frac{207}{300} to lowest terms by extracting and canceling out 3.
x^{2}-\frac{13}{20}x+\left(-\frac{13}{40}\right)^{2}=\frac{69}{100}+\left(-\frac{13}{40}\right)^{2}
Divide -\frac{13}{20}, the coefficient of the x term, by 2 to get -\frac{13}{40}. Then add the square of -\frac{13}{40} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{13}{20}x+\frac{169}{1600}=\frac{69}{100}+\frac{169}{1600}
Square -\frac{13}{40} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{13}{20}x+\frac{169}{1600}=\frac{1273}{1600}
Add \frac{69}{100} to \frac{169}{1600} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{13}{40}\right)^{2}=\frac{1273}{1600}
Factor x^{2}-\frac{13}{20}x+\frac{169}{1600}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{13}{40}\right)^{2}}=\sqrt{\frac{1273}{1600}}
Take the square root of both sides of the equation.
x-\frac{13}{40}=\frac{\sqrt{1273}}{40} x-\frac{13}{40}=-\frac{\sqrt{1273}}{40}
Simplify.
x=\frac{\sqrt{1273}+13}{40} x=\frac{13-\sqrt{1273}}{40}
Add \frac{13}{40} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}