Evaluate
\frac{6}{5}=1.2
Factor
\frac{2 \cdot 3}{5} = 1\frac{1}{5} = 1.2
Share
Copied to clipboard
\begin{array}{l}\phantom{180)}\phantom{1}\\180\overline{)216}\\\end{array}
Use the 1^{st} digit 2 from dividend 216
\begin{array}{l}\phantom{180)}0\phantom{2}\\180\overline{)216}\\\end{array}
Since 2 is less than 180, use the next digit 1 from dividend 216 and add 0 to the quotient
\begin{array}{l}\phantom{180)}0\phantom{3}\\180\overline{)216}\\\end{array}
Use the 2^{nd} digit 1 from dividend 216
\begin{array}{l}\phantom{180)}00\phantom{4}\\180\overline{)216}\\\end{array}
Since 21 is less than 180, use the next digit 6 from dividend 216 and add 0 to the quotient
\begin{array}{l}\phantom{180)}00\phantom{5}\\180\overline{)216}\\\end{array}
Use the 3^{rd} digit 6 from dividend 216
\begin{array}{l}\phantom{180)}001\phantom{6}\\180\overline{)216}\\\phantom{180)}\underline{\phantom{}180\phantom{}}\\\phantom{180)9}36\\\end{array}
Find closest multiple of 180 to 216. We see that 1 \times 180 = 180 is the nearest. Now subtract 180 from 216 to get reminder 36. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }36
Since 36 is less than 180, stop the division. The reminder is 36. The topmost line 001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}