Solve for x
x = \frac{1459}{8} = 182\frac{3}{8} = 182.375
Graph
Quiz
Linear Equation
5 problems similar to:
\frac { 212 - 90 } { 90 - 32 } = \frac { 373 - x } { 273 - x }
Share
Copied to clipboard
\left(-\frac{1}{58}x+\frac{273}{58}\right)\left(212-90\right)=373-x
Variable x cannot be equal to 273 since division by zero is not defined. Multiply both sides of the equation by -x+273.
\left(-\frac{1}{58}x+\frac{273}{58}\right)\times 122=373-x
Subtract 90 from 212 to get 122.
-\frac{61}{29}x+\frac{16653}{29}=373-x
Use the distributive property to multiply -\frac{1}{58}x+\frac{273}{58} by 122.
-\frac{61}{29}x+\frac{16653}{29}+x=373
Add x to both sides.
-\frac{32}{29}x+\frac{16653}{29}=373
Combine -\frac{61}{29}x and x to get -\frac{32}{29}x.
-\frac{32}{29}x=373-\frac{16653}{29}
Subtract \frac{16653}{29} from both sides.
-\frac{32}{29}x=-\frac{5836}{29}
Subtract \frac{16653}{29} from 373 to get -\frac{5836}{29}.
x=-\frac{5836}{29}\left(-\frac{29}{32}\right)
Multiply both sides by -\frac{29}{32}, the reciprocal of -\frac{32}{29}.
x=\frac{1459}{8}
Multiply -\frac{5836}{29} and -\frac{29}{32} to get \frac{1459}{8}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}