Evaluate
\frac{1056}{295}\approx 3.579661017
Factor
\frac{2 ^ {5} \cdot 3 \cdot 11}{5 \cdot 59} = 3\frac{171}{295} = 3.5796610169491525
Share
Copied to clipboard
\begin{array}{l}\phantom{590)}\phantom{1}\\590\overline{)2112}\\\end{array}
Use the 1^{st} digit 2 from dividend 2112
\begin{array}{l}\phantom{590)}0\phantom{2}\\590\overline{)2112}\\\end{array}
Since 2 is less than 590, use the next digit 1 from dividend 2112 and add 0 to the quotient
\begin{array}{l}\phantom{590)}0\phantom{3}\\590\overline{)2112}\\\end{array}
Use the 2^{nd} digit 1 from dividend 2112
\begin{array}{l}\phantom{590)}00\phantom{4}\\590\overline{)2112}\\\end{array}
Since 21 is less than 590, use the next digit 1 from dividend 2112 and add 0 to the quotient
\begin{array}{l}\phantom{590)}00\phantom{5}\\590\overline{)2112}\\\end{array}
Use the 3^{rd} digit 1 from dividend 2112
\begin{array}{l}\phantom{590)}000\phantom{6}\\590\overline{)2112}\\\end{array}
Since 211 is less than 590, use the next digit 2 from dividend 2112 and add 0 to the quotient
\begin{array}{l}\phantom{590)}000\phantom{7}\\590\overline{)2112}\\\end{array}
Use the 4^{th} digit 2 from dividend 2112
\begin{array}{l}\phantom{590)}0003\phantom{8}\\590\overline{)2112}\\\phantom{590)}\underline{\phantom{}1770\phantom{}}\\\phantom{590)9}342\\\end{array}
Find closest multiple of 590 to 2112. We see that 3 \times 590 = 1770 is the nearest. Now subtract 1770 from 2112 to get reminder 342. Add 3 to quotient.
\text{Quotient: }3 \text{Reminder: }342
Since 342 is less than 590, stop the division. The reminder is 342. The topmost line 0003 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}