Solve for x
x=-48
x=36
Graph
Share
Copied to clipboard
x\times 208+x\left(x+16\right)\times 2=\left(x+16\right)\times 216
Variable x cannot be equal to any of the values -16,0 since division by zero is not defined. Multiply both sides of the equation by x\left(x+16\right), the least common multiple of x+16,x.
x\times 208+\left(x^{2}+16x\right)\times 2=\left(x+16\right)\times 216
Use the distributive property to multiply x by x+16.
x\times 208+2x^{2}+32x=\left(x+16\right)\times 216
Use the distributive property to multiply x^{2}+16x by 2.
240x+2x^{2}=\left(x+16\right)\times 216
Combine x\times 208 and 32x to get 240x.
240x+2x^{2}=216x+3456
Use the distributive property to multiply x+16 by 216.
240x+2x^{2}-216x=3456
Subtract 216x from both sides.
24x+2x^{2}=3456
Combine 240x and -216x to get 24x.
24x+2x^{2}-3456=0
Subtract 3456 from both sides.
2x^{2}+24x-3456=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-24±\sqrt{24^{2}-4\times 2\left(-3456\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 24 for b, and -3456 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-24±\sqrt{576-4\times 2\left(-3456\right)}}{2\times 2}
Square 24.
x=\frac{-24±\sqrt{576-8\left(-3456\right)}}{2\times 2}
Multiply -4 times 2.
x=\frac{-24±\sqrt{576+27648}}{2\times 2}
Multiply -8 times -3456.
x=\frac{-24±\sqrt{28224}}{2\times 2}
Add 576 to 27648.
x=\frac{-24±168}{2\times 2}
Take the square root of 28224.
x=\frac{-24±168}{4}
Multiply 2 times 2.
x=\frac{144}{4}
Now solve the equation x=\frac{-24±168}{4} when ± is plus. Add -24 to 168.
x=36
Divide 144 by 4.
x=-\frac{192}{4}
Now solve the equation x=\frac{-24±168}{4} when ± is minus. Subtract 168 from -24.
x=-48
Divide -192 by 4.
x=36 x=-48
The equation is now solved.
x\times 208+x\left(x+16\right)\times 2=\left(x+16\right)\times 216
Variable x cannot be equal to any of the values -16,0 since division by zero is not defined. Multiply both sides of the equation by x\left(x+16\right), the least common multiple of x+16,x.
x\times 208+\left(x^{2}+16x\right)\times 2=\left(x+16\right)\times 216
Use the distributive property to multiply x by x+16.
x\times 208+2x^{2}+32x=\left(x+16\right)\times 216
Use the distributive property to multiply x^{2}+16x by 2.
240x+2x^{2}=\left(x+16\right)\times 216
Combine x\times 208 and 32x to get 240x.
240x+2x^{2}=216x+3456
Use the distributive property to multiply x+16 by 216.
240x+2x^{2}-216x=3456
Subtract 216x from both sides.
24x+2x^{2}=3456
Combine 240x and -216x to get 24x.
2x^{2}+24x=3456
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{2x^{2}+24x}{2}=\frac{3456}{2}
Divide both sides by 2.
x^{2}+\frac{24}{2}x=\frac{3456}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}+12x=\frac{3456}{2}
Divide 24 by 2.
x^{2}+12x=1728
Divide 3456 by 2.
x^{2}+12x+6^{2}=1728+6^{2}
Divide 12, the coefficient of the x term, by 2 to get 6. Then add the square of 6 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+12x+36=1728+36
Square 6.
x^{2}+12x+36=1764
Add 1728 to 36.
\left(x+6\right)^{2}=1764
Factor x^{2}+12x+36. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+6\right)^{2}}=\sqrt{1764}
Take the square root of both sides of the equation.
x+6=42 x+6=-42
Simplify.
x=36 x=-48
Subtract 6 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}