Evaluate
\frac{102397}{192}\approx 533.317708333
Factor
\frac{102397}{2 ^ {6} \cdot 3} = 533\frac{61}{192} = 533.3177083333334
Share
Copied to clipboard
\begin{array}{l}\phantom{384)}\phantom{1}\\384\overline{)204794}\\\end{array}
Use the 1^{st} digit 2 from dividend 204794
\begin{array}{l}\phantom{384)}0\phantom{2}\\384\overline{)204794}\\\end{array}
Since 2 is less than 384, use the next digit 0 from dividend 204794 and add 0 to the quotient
\begin{array}{l}\phantom{384)}0\phantom{3}\\384\overline{)204794}\\\end{array}
Use the 2^{nd} digit 0 from dividend 204794
\begin{array}{l}\phantom{384)}00\phantom{4}\\384\overline{)204794}\\\end{array}
Since 20 is less than 384, use the next digit 4 from dividend 204794 and add 0 to the quotient
\begin{array}{l}\phantom{384)}00\phantom{5}\\384\overline{)204794}\\\end{array}
Use the 3^{rd} digit 4 from dividend 204794
\begin{array}{l}\phantom{384)}000\phantom{6}\\384\overline{)204794}\\\end{array}
Since 204 is less than 384, use the next digit 7 from dividend 204794 and add 0 to the quotient
\begin{array}{l}\phantom{384)}000\phantom{7}\\384\overline{)204794}\\\end{array}
Use the 4^{th} digit 7 from dividend 204794
\begin{array}{l}\phantom{384)}0005\phantom{8}\\384\overline{)204794}\\\phantom{384)}\underline{\phantom{}1920\phantom{99}}\\\phantom{384)9}127\\\end{array}
Find closest multiple of 384 to 2047. We see that 5 \times 384 = 1920 is the nearest. Now subtract 1920 from 2047 to get reminder 127. Add 5 to quotient.
\begin{array}{l}\phantom{384)}0005\phantom{9}\\384\overline{)204794}\\\phantom{384)}\underline{\phantom{}1920\phantom{99}}\\\phantom{384)9}1279\\\end{array}
Use the 5^{th} digit 9 from dividend 204794
\begin{array}{l}\phantom{384)}00053\phantom{10}\\384\overline{)204794}\\\phantom{384)}\underline{\phantom{}1920\phantom{99}}\\\phantom{384)9}1279\\\phantom{384)}\underline{\phantom{9}1152\phantom{9}}\\\phantom{384)99}127\\\end{array}
Find closest multiple of 384 to 1279. We see that 3 \times 384 = 1152 is the nearest. Now subtract 1152 from 1279 to get reminder 127. Add 3 to quotient.
\begin{array}{l}\phantom{384)}00053\phantom{11}\\384\overline{)204794}\\\phantom{384)}\underline{\phantom{}1920\phantom{99}}\\\phantom{384)9}1279\\\phantom{384)}\underline{\phantom{9}1152\phantom{9}}\\\phantom{384)99}1274\\\end{array}
Use the 6^{th} digit 4 from dividend 204794
\begin{array}{l}\phantom{384)}000533\phantom{12}\\384\overline{)204794}\\\phantom{384)}\underline{\phantom{}1920\phantom{99}}\\\phantom{384)9}1279\\\phantom{384)}\underline{\phantom{9}1152\phantom{9}}\\\phantom{384)99}1274\\\phantom{384)}\underline{\phantom{99}1152\phantom{}}\\\phantom{384)999}122\\\end{array}
Find closest multiple of 384 to 1274. We see that 3 \times 384 = 1152 is the nearest. Now subtract 1152 from 1274 to get reminder 122. Add 3 to quotient.
\text{Quotient: }533 \text{Reminder: }122
Since 122 is less than 384, stop the division. The reminder is 122. The topmost line 000533 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 533.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}