Evaluate
\frac{2020}{203}\approx 9.950738916
Factor
\frac{2 ^ {2} \cdot 5 \cdot 101}{7 \cdot 29} = 9\frac{193}{203} = 9.950738916256158
Share
Copied to clipboard
\begin{array}{l}\phantom{203)}\phantom{1}\\203\overline{)2020}\\\end{array}
Use the 1^{st} digit 2 from dividend 2020
\begin{array}{l}\phantom{203)}0\phantom{2}\\203\overline{)2020}\\\end{array}
Since 2 is less than 203, use the next digit 0 from dividend 2020 and add 0 to the quotient
\begin{array}{l}\phantom{203)}0\phantom{3}\\203\overline{)2020}\\\end{array}
Use the 2^{nd} digit 0 from dividend 2020
\begin{array}{l}\phantom{203)}00\phantom{4}\\203\overline{)2020}\\\end{array}
Since 20 is less than 203, use the next digit 2 from dividend 2020 and add 0 to the quotient
\begin{array}{l}\phantom{203)}00\phantom{5}\\203\overline{)2020}\\\end{array}
Use the 3^{rd} digit 2 from dividend 2020
\begin{array}{l}\phantom{203)}000\phantom{6}\\203\overline{)2020}\\\end{array}
Since 202 is less than 203, use the next digit 0 from dividend 2020 and add 0 to the quotient
\begin{array}{l}\phantom{203)}000\phantom{7}\\203\overline{)2020}\\\end{array}
Use the 4^{th} digit 0 from dividend 2020
\begin{array}{l}\phantom{203)}0009\phantom{8}\\203\overline{)2020}\\\phantom{203)}\underline{\phantom{}1827\phantom{}}\\\phantom{203)9}193\\\end{array}
Find closest multiple of 203 to 2020. We see that 9 \times 203 = 1827 is the nearest. Now subtract 1827 from 2020 to get reminder 193. Add 9 to quotient.
\text{Quotient: }9 \text{Reminder: }193
Since 193 is less than 203, stop the division. The reminder is 193. The topmost line 0009 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 9.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}