Evaluate
\frac{201}{160}=1.25625
Factor
\frac{3 \cdot 67}{2 ^ {5} \cdot 5} = 1\frac{41}{160} = 1.25625
Share
Copied to clipboard
\begin{array}{l}\phantom{1600)}\phantom{1}\\1600\overline{)2010}\\\end{array}
Use the 1^{st} digit 2 from dividend 2010
\begin{array}{l}\phantom{1600)}0\phantom{2}\\1600\overline{)2010}\\\end{array}
Since 2 is less than 1600, use the next digit 0 from dividend 2010 and add 0 to the quotient
\begin{array}{l}\phantom{1600)}0\phantom{3}\\1600\overline{)2010}\\\end{array}
Use the 2^{nd} digit 0 from dividend 2010
\begin{array}{l}\phantom{1600)}00\phantom{4}\\1600\overline{)2010}\\\end{array}
Since 20 is less than 1600, use the next digit 1 from dividend 2010 and add 0 to the quotient
\begin{array}{l}\phantom{1600)}00\phantom{5}\\1600\overline{)2010}\\\end{array}
Use the 3^{rd} digit 1 from dividend 2010
\begin{array}{l}\phantom{1600)}000\phantom{6}\\1600\overline{)2010}\\\end{array}
Since 201 is less than 1600, use the next digit 0 from dividend 2010 and add 0 to the quotient
\begin{array}{l}\phantom{1600)}000\phantom{7}\\1600\overline{)2010}\\\end{array}
Use the 4^{th} digit 0 from dividend 2010
\begin{array}{l}\phantom{1600)}0001\phantom{8}\\1600\overline{)2010}\\\phantom{1600)}\underline{\phantom{}1600\phantom{}}\\\phantom{1600)9}410\\\end{array}
Find closest multiple of 1600 to 2010. We see that 1 \times 1600 = 1600 is the nearest. Now subtract 1600 from 2010 to get reminder 410. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }410
Since 410 is less than 1600, stop the division. The reminder is 410. The topmost line 0001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}