Evaluate
\frac{67}{30}\approx 2.233333333
Factor
\frac{67}{2 \cdot 3 \cdot 5} = 2\frac{7}{30} = 2.2333333333333334
Share
Copied to clipboard
\begin{array}{l}\phantom{90)}\phantom{1}\\90\overline{)201}\\\end{array}
Use the 1^{st} digit 2 from dividend 201
\begin{array}{l}\phantom{90)}0\phantom{2}\\90\overline{)201}\\\end{array}
Since 2 is less than 90, use the next digit 0 from dividend 201 and add 0 to the quotient
\begin{array}{l}\phantom{90)}0\phantom{3}\\90\overline{)201}\\\end{array}
Use the 2^{nd} digit 0 from dividend 201
\begin{array}{l}\phantom{90)}00\phantom{4}\\90\overline{)201}\\\end{array}
Since 20 is less than 90, use the next digit 1 from dividend 201 and add 0 to the quotient
\begin{array}{l}\phantom{90)}00\phantom{5}\\90\overline{)201}\\\end{array}
Use the 3^{rd} digit 1 from dividend 201
\begin{array}{l}\phantom{90)}002\phantom{6}\\90\overline{)201}\\\phantom{90)}\underline{\phantom{}180\phantom{}}\\\phantom{90)9}21\\\end{array}
Find closest multiple of 90 to 201. We see that 2 \times 90 = 180 is the nearest. Now subtract 180 from 201 to get reminder 21. Add 2 to quotient.
\text{Quotient: }2 \text{Reminder: }21
Since 21 is less than 90, stop the division. The reminder is 21. The topmost line 002 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}