Evaluate
\frac{67}{5}=13.4
Factor
\frac{67}{5} = 13\frac{2}{5} = 13.4
Share
Copied to clipboard
\begin{array}{l}\phantom{15)}\phantom{1}\\15\overline{)201}\\\end{array}
Use the 1^{st} digit 2 from dividend 201
\begin{array}{l}\phantom{15)}0\phantom{2}\\15\overline{)201}\\\end{array}
Since 2 is less than 15, use the next digit 0 from dividend 201 and add 0 to the quotient
\begin{array}{l}\phantom{15)}0\phantom{3}\\15\overline{)201}\\\end{array}
Use the 2^{nd} digit 0 from dividend 201
\begin{array}{l}\phantom{15)}01\phantom{4}\\15\overline{)201}\\\phantom{15)}\underline{\phantom{}15\phantom{9}}\\\phantom{15)9}5\\\end{array}
Find closest multiple of 15 to 20. We see that 1 \times 15 = 15 is the nearest. Now subtract 15 from 20 to get reminder 5. Add 1 to quotient.
\begin{array}{l}\phantom{15)}01\phantom{5}\\15\overline{)201}\\\phantom{15)}\underline{\phantom{}15\phantom{9}}\\\phantom{15)9}51\\\end{array}
Use the 3^{rd} digit 1 from dividend 201
\begin{array}{l}\phantom{15)}013\phantom{6}\\15\overline{)201}\\\phantom{15)}\underline{\phantom{}15\phantom{9}}\\\phantom{15)9}51\\\phantom{15)}\underline{\phantom{9}45\phantom{}}\\\phantom{15)99}6\\\end{array}
Find closest multiple of 15 to 51. We see that 3 \times 15 = 45 is the nearest. Now subtract 45 from 51 to get reminder 6. Add 3 to quotient.
\text{Quotient: }13 \text{Reminder: }6
Since 6 is less than 15, stop the division. The reminder is 6. The topmost line 013 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 13.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}