Solve for a_1
a_{1} = \frac{\sqrt{403}}{2} \approx 10.03742995
a_{1} = -\frac{\sqrt{403}}{2} \approx -10.03742995
Share
Copied to clipboard
\frac{201}{\frac{3}{2}}=\frac{a_{1}^{2}\times 1-\frac{1}{4}}{1-\frac{1}{4}}
Add 1 and \frac{1}{2} to get \frac{3}{2}.
201\times \frac{2}{3}=\frac{a_{1}^{2}\times 1-\frac{1}{4}}{1-\frac{1}{4}}
Divide 201 by \frac{3}{2} by multiplying 201 by the reciprocal of \frac{3}{2}.
134=\frac{a_{1}^{2}\times 1-\frac{1}{4}}{1-\frac{1}{4}}
Multiply 201 and \frac{2}{3} to get 134.
134=\frac{a_{1}^{2}\times 1-\frac{1}{4}}{\frac{3}{4}}
Subtract \frac{1}{4} from 1 to get \frac{3}{4}.
134=\frac{a_{1}^{2}\times 1}{\frac{3}{4}}+\frac{-\frac{1}{4}}{\frac{3}{4}}
Divide each term of a_{1}^{2}\times 1-\frac{1}{4} by \frac{3}{4} to get \frac{a_{1}^{2}\times 1}{\frac{3}{4}}+\frac{-\frac{1}{4}}{\frac{3}{4}}.
134=a_{1}^{2}\times \frac{4}{3}+\frac{-\frac{1}{4}}{\frac{3}{4}}
Divide a_{1}^{2}\times 1 by \frac{3}{4} to get a_{1}^{2}\times \frac{4}{3}.
134=a_{1}^{2}\times \frac{4}{3}-\frac{1}{4}\times \frac{4}{3}
Divide -\frac{1}{4} by \frac{3}{4} by multiplying -\frac{1}{4} by the reciprocal of \frac{3}{4}.
134=a_{1}^{2}\times \frac{4}{3}-\frac{1}{3}
Multiply -\frac{1}{4} and \frac{4}{3} to get -\frac{1}{3}.
a_{1}^{2}\times \frac{4}{3}-\frac{1}{3}=134
Swap sides so that all variable terms are on the left hand side.
a_{1}^{2}\times \frac{4}{3}=134+\frac{1}{3}
Add \frac{1}{3} to both sides.
a_{1}^{2}\times \frac{4}{3}=\frac{403}{3}
Add 134 and \frac{1}{3} to get \frac{403}{3}.
a_{1}^{2}=\frac{403}{3}\times \frac{3}{4}
Multiply both sides by \frac{3}{4}, the reciprocal of \frac{4}{3}.
a_{1}^{2}=\frac{403}{4}
Multiply \frac{403}{3} and \frac{3}{4} to get \frac{403}{4}.
a_{1}=\frac{\sqrt{403}}{2} a_{1}=-\frac{\sqrt{403}}{2}
Take the square root of both sides of the equation.
\frac{201}{\frac{3}{2}}=\frac{a_{1}^{2}\times 1-\frac{1}{4}}{1-\frac{1}{4}}
Add 1 and \frac{1}{2} to get \frac{3}{2}.
201\times \frac{2}{3}=\frac{a_{1}^{2}\times 1-\frac{1}{4}}{1-\frac{1}{4}}
Divide 201 by \frac{3}{2} by multiplying 201 by the reciprocal of \frac{3}{2}.
134=\frac{a_{1}^{2}\times 1-\frac{1}{4}}{1-\frac{1}{4}}
Multiply 201 and \frac{2}{3} to get 134.
134=\frac{a_{1}^{2}\times 1-\frac{1}{4}}{\frac{3}{4}}
Subtract \frac{1}{4} from 1 to get \frac{3}{4}.
134=\frac{a_{1}^{2}\times 1}{\frac{3}{4}}+\frac{-\frac{1}{4}}{\frac{3}{4}}
Divide each term of a_{1}^{2}\times 1-\frac{1}{4} by \frac{3}{4} to get \frac{a_{1}^{2}\times 1}{\frac{3}{4}}+\frac{-\frac{1}{4}}{\frac{3}{4}}.
134=a_{1}^{2}\times \frac{4}{3}+\frac{-\frac{1}{4}}{\frac{3}{4}}
Divide a_{1}^{2}\times 1 by \frac{3}{4} to get a_{1}^{2}\times \frac{4}{3}.
134=a_{1}^{2}\times \frac{4}{3}-\frac{1}{4}\times \frac{4}{3}
Divide -\frac{1}{4} by \frac{3}{4} by multiplying -\frac{1}{4} by the reciprocal of \frac{3}{4}.
134=a_{1}^{2}\times \frac{4}{3}-\frac{1}{3}
Multiply -\frac{1}{4} and \frac{4}{3} to get -\frac{1}{3}.
a_{1}^{2}\times \frac{4}{3}-\frac{1}{3}=134
Swap sides so that all variable terms are on the left hand side.
a_{1}^{2}\times \frac{4}{3}-\frac{1}{3}-134=0
Subtract 134 from both sides.
a_{1}^{2}\times \frac{4}{3}-\frac{403}{3}=0
Subtract 134 from -\frac{1}{3} to get -\frac{403}{3}.
\frac{4}{3}a_{1}^{2}-\frac{403}{3}=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
a_{1}=\frac{0±\sqrt{0^{2}-4\times \frac{4}{3}\left(-\frac{403}{3}\right)}}{2\times \frac{4}{3}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{4}{3} for a, 0 for b, and -\frac{403}{3} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a_{1}=\frac{0±\sqrt{-4\times \frac{4}{3}\left(-\frac{403}{3}\right)}}{2\times \frac{4}{3}}
Square 0.
a_{1}=\frac{0±\sqrt{-\frac{16}{3}\left(-\frac{403}{3}\right)}}{2\times \frac{4}{3}}
Multiply -4 times \frac{4}{3}.
a_{1}=\frac{0±\sqrt{\frac{6448}{9}}}{2\times \frac{4}{3}}
Multiply -\frac{16}{3} times -\frac{403}{3} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
a_{1}=\frac{0±\frac{4\sqrt{403}}{3}}{2\times \frac{4}{3}}
Take the square root of \frac{6448}{9}.
a_{1}=\frac{0±\frac{4\sqrt{403}}{3}}{\frac{8}{3}}
Multiply 2 times \frac{4}{3}.
a_{1}=\frac{\sqrt{403}}{2}
Now solve the equation a_{1}=\frac{0±\frac{4\sqrt{403}}{3}}{\frac{8}{3}} when ± is plus.
a_{1}=-\frac{\sqrt{403}}{2}
Now solve the equation a_{1}=\frac{0±\frac{4\sqrt{403}}{3}}{\frac{8}{3}} when ± is minus.
a_{1}=\frac{\sqrt{403}}{2} a_{1}=-\frac{\sqrt{403}}{2}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}