Evaluate
\frac{2001}{1000}=2.001
Factor
\frac{3 \cdot 23 \cdot 29}{2 ^ {3} \cdot 5 ^ {3}} = 2\frac{1}{1000} = 2.001
Share
Copied to clipboard
\begin{array}{l}\phantom{1000)}\phantom{1}\\1000\overline{)2001}\\\end{array}
Use the 1^{st} digit 2 from dividend 2001
\begin{array}{l}\phantom{1000)}0\phantom{2}\\1000\overline{)2001}\\\end{array}
Since 2 is less than 1000, use the next digit 0 from dividend 2001 and add 0 to the quotient
\begin{array}{l}\phantom{1000)}0\phantom{3}\\1000\overline{)2001}\\\end{array}
Use the 2^{nd} digit 0 from dividend 2001
\begin{array}{l}\phantom{1000)}00\phantom{4}\\1000\overline{)2001}\\\end{array}
Since 20 is less than 1000, use the next digit 0 from dividend 2001 and add 0 to the quotient
\begin{array}{l}\phantom{1000)}00\phantom{5}\\1000\overline{)2001}\\\end{array}
Use the 3^{rd} digit 0 from dividend 2001
\begin{array}{l}\phantom{1000)}000\phantom{6}\\1000\overline{)2001}\\\end{array}
Since 200 is less than 1000, use the next digit 1 from dividend 2001 and add 0 to the quotient
\begin{array}{l}\phantom{1000)}000\phantom{7}\\1000\overline{)2001}\\\end{array}
Use the 4^{th} digit 1 from dividend 2001
\begin{array}{l}\phantom{1000)}0002\phantom{8}\\1000\overline{)2001}\\\phantom{1000)}\underline{\phantom{}2000\phantom{}}\\\phantom{1000)999}1\\\end{array}
Find closest multiple of 1000 to 2001. We see that 2 \times 1000 = 2000 is the nearest. Now subtract 2000 from 2001 to get reminder 1. Add 2 to quotient.
\text{Quotient: }2 \text{Reminder: }1
Since 1 is less than 1000, stop the division. The reminder is 1. The topmost line 0002 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}