Evaluate
\frac{20005683}{2254079}\approx 8.875324689
Factor
\frac{3 \cdot 107 \cdot 62323}{2254079} = 8\frac{1973051}{2254079} = 8.875324689152421
Share
Copied to clipboard
\begin{array}{l}\phantom{2254079)}\phantom{1}\\2254079\overline{)20005683}\\\end{array}
Use the 1^{st} digit 2 from dividend 20005683
\begin{array}{l}\phantom{2254079)}0\phantom{2}\\2254079\overline{)20005683}\\\end{array}
Since 2 is less than 2254079, use the next digit 0 from dividend 20005683 and add 0 to the quotient
\begin{array}{l}\phantom{2254079)}0\phantom{3}\\2254079\overline{)20005683}\\\end{array}
Use the 2^{nd} digit 0 from dividend 20005683
\begin{array}{l}\phantom{2254079)}00\phantom{4}\\2254079\overline{)20005683}\\\end{array}
Since 20 is less than 2254079, use the next digit 0 from dividend 20005683 and add 0 to the quotient
\begin{array}{l}\phantom{2254079)}00\phantom{5}\\2254079\overline{)20005683}\\\end{array}
Use the 3^{rd} digit 0 from dividend 20005683
\begin{array}{l}\phantom{2254079)}000\phantom{6}\\2254079\overline{)20005683}\\\end{array}
Since 200 is less than 2254079, use the next digit 0 from dividend 20005683 and add 0 to the quotient
\begin{array}{l}\phantom{2254079)}000\phantom{7}\\2254079\overline{)20005683}\\\end{array}
Use the 4^{th} digit 0 from dividend 20005683
\begin{array}{l}\phantom{2254079)}0000\phantom{8}\\2254079\overline{)20005683}\\\end{array}
Since 2000 is less than 2254079, use the next digit 5 from dividend 20005683 and add 0 to the quotient
\begin{array}{l}\phantom{2254079)}0000\phantom{9}\\2254079\overline{)20005683}\\\end{array}
Use the 5^{th} digit 5 from dividend 20005683
\begin{array}{l}\phantom{2254079)}00000\phantom{10}\\2254079\overline{)20005683}\\\end{array}
Since 20005 is less than 2254079, use the next digit 6 from dividend 20005683 and add 0 to the quotient
\begin{array}{l}\phantom{2254079)}00000\phantom{11}\\2254079\overline{)20005683}\\\end{array}
Use the 6^{th} digit 6 from dividend 20005683
\begin{array}{l}\phantom{2254079)}000000\phantom{12}\\2254079\overline{)20005683}\\\end{array}
Since 200056 is less than 2254079, use the next digit 8 from dividend 20005683 and add 0 to the quotient
\begin{array}{l}\phantom{2254079)}000000\phantom{13}\\2254079\overline{)20005683}\\\end{array}
Use the 7^{th} digit 8 from dividend 20005683
\begin{array}{l}\phantom{2254079)}0000000\phantom{14}\\2254079\overline{)20005683}\\\end{array}
Since 2000568 is less than 2254079, use the next digit 3 from dividend 20005683 and add 0 to the quotient
\begin{array}{l}\phantom{2254079)}0000000\phantom{15}\\2254079\overline{)20005683}\\\end{array}
Use the 8^{th} digit 3 from dividend 20005683
\begin{array}{l}\phantom{2254079)}00000008\phantom{16}\\2254079\overline{)20005683}\\\phantom{2254079)}\underline{\phantom{}18032632\phantom{}}\\\phantom{2254079)9}1973051\\\end{array}
Find closest multiple of 2254079 to 20005683. We see that 8 \times 2254079 = 18032632 is the nearest. Now subtract 18032632 from 20005683 to get reminder 1973051. Add 8 to quotient.
\text{Quotient: }8 \text{Reminder: }1973051
Since 1973051 is less than 2254079, stop the division. The reminder is 1973051. The topmost line 00000008 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 8.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}