Evaluate
\frac{6125}{144}\approx 42.534722222
Factor
\frac{5 ^ {3} \cdot 7 ^ {2}}{2 ^ {4} \cdot 3 ^ {2}} = 42\frac{77}{144} = 42.53472222222222
Share
Copied to clipboard
\frac{2000+\frac{125}{3}}{48}
Reduce the fraction \frac{2000}{48} to lowest terms by extracting and canceling out 16.
\frac{\frac{6000}{3}+\frac{125}{3}}{48}
Convert 2000 to fraction \frac{6000}{3}.
\frac{\frac{6000+125}{3}}{48}
Since \frac{6000}{3} and \frac{125}{3} have the same denominator, add them by adding their numerators.
\frac{\frac{6125}{3}}{48}
Add 6000 and 125 to get 6125.
\frac{6125}{3\times 48}
Express \frac{\frac{6125}{3}}{48} as a single fraction.
\frac{6125}{144}
Multiply 3 and 48 to get 144.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}