Solve for a
a=-\frac{5b}{5-b}
b\neq 0\text{ and }b\neq 5
Solve for b
b=-\frac{5a}{5-a}
a\neq 0\text{ and }a\neq 5
Share
Copied to clipboard
b\times 200+a\times 200=40ab
Variable a cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by ab, the least common multiple of a,b.
b\times 200+a\times 200-40ab=0
Subtract 40ab from both sides.
a\times 200-40ab=-b\times 200
Subtract b\times 200 from both sides. Anything subtracted from zero gives its negation.
a\times 200-40ab=-200b
Multiply -1 and 200 to get -200.
\left(200-40b\right)a=-200b
Combine all terms containing a.
\frac{\left(200-40b\right)a}{200-40b}=-\frac{200b}{200-40b}
Divide both sides by 200-40b.
a=-\frac{200b}{200-40b}
Dividing by 200-40b undoes the multiplication by 200-40b.
a=-\frac{5b}{5-b}
Divide -200b by 200-40b.
a=-\frac{5b}{5-b}\text{, }a\neq 0
Variable a cannot be equal to 0.
b\times 200+a\times 200=40ab
Variable b cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by ab, the least common multiple of a,b.
b\times 200+a\times 200-40ab=0
Subtract 40ab from both sides.
b\times 200-40ab=-a\times 200
Subtract a\times 200 from both sides. Anything subtracted from zero gives its negation.
b\times 200-40ab=-200a
Multiply -1 and 200 to get -200.
\left(200-40a\right)b=-200a
Combine all terms containing b.
\frac{\left(200-40a\right)b}{200-40a}=-\frac{200a}{200-40a}
Divide both sides by 200-40a.
b=-\frac{200a}{200-40a}
Dividing by 200-40a undoes the multiplication by 200-40a.
b=-\frac{5a}{5-a}
Divide -200a by 200-40a.
b=-\frac{5a}{5-a}\text{, }b\neq 0
Variable b cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}