Evaluate
\frac{43694998406037084299810227910543317447982632863504270673778384615687496228938935854511965268724225622205845960050}{70756325629564217406368679086270223318708281687179462918100439563035681962333735895816845160493362476050108229}\approx 617.541937307
Share
Copied to clipboard
\frac{20000\times \frac{7}{1200}}{1-\left(1+\frac{0.07}{12}\right)^{-12\times 3}}
Expand \frac{0.07}{12} by multiplying both numerator and the denominator by 100.
\frac{\frac{350}{3}}{1-\left(1+\frac{0.07}{12}\right)^{-12\times 3}}
Multiply 20000 and \frac{7}{1200} to get \frac{350}{3}.
\frac{\frac{350}{3}}{1-\left(1+\frac{7}{1200}\right)^{-12\times 3}}
Expand \frac{0.07}{12} by multiplying both numerator and the denominator by 100.
\frac{\frac{350}{3}}{1-\left(\frac{1207}{1200}\right)^{-12\times 3}}
Add 1 and \frac{7}{1200} to get \frac{1207}{1200}.
\frac{\frac{350}{3}}{1-\left(\frac{1207}{1200}\right)^{-36}}
Multiply -12 and 3 to get -36.
\frac{\frac{350}{3}}{1-\frac{708801874985091845381344307009569161216000000000000000000000000000000000000000000000000000000000000000000000000}{873899968120741685996204558210866348959652657270085413475567692313749924578778717090239305374484512444116919201}}
Calculate \frac{1207}{1200} to the power of -36 and get \frac{708801874985091845381344307009569161216000000000000000000000000000000000000000000000000000000000000000000000000}{873899968120741685996204558210866348959652657270085413475567692313749924578778717090239305374484512444116919201}.
\frac{\frac{350}{3}}{\frac{165098093135649840614860251201297187743652657270085413475567692313749924578778717090239305374484512444116919201}{873899968120741685996204558210866348959652657270085413475567692313749924578778717090239305374484512444116919201}}
Subtract \frac{708801874985091845381344307009569161216000000000000000000000000000000000000000000000000000000000000000000000000}{873899968120741685996204558210866348959652657270085413475567692313749924578778717090239305374484512444116919201} from 1 to get \frac{165098093135649840614860251201297187743652657270085413475567692313749924578778717090239305374484512444116919201}{873899968120741685996204558210866348959652657270085413475567692313749924578778717090239305374484512444116919201}.
\frac{350}{3}\times \frac{873899968120741685996204558210866348959652657270085413475567692313749924578778717090239305374484512444116919201}{165098093135649840614860251201297187743652657270085413475567692313749924578778717090239305374484512444116919201}
Divide \frac{350}{3} by \frac{165098093135649840614860251201297187743652657270085413475567692313749924578778717090239305374484512444116919201}{873899968120741685996204558210866348959652657270085413475567692313749924578778717090239305374484512444116919201} by multiplying \frac{350}{3} by the reciprocal of \frac{165098093135649840614860251201297187743652657270085413475567692313749924578778717090239305374484512444116919201}{873899968120741685996204558210866348959652657270085413475567692313749924578778717090239305374484512444116919201}.
\frac{43694998406037084299810227910543317447982632863504270673778384615687496228938935854511965268724225622205845960050}{70756325629564217406368679086270223318708281687179462918100439563035681962333735895816845160493362476050108229}
Multiply \frac{350}{3} and \frac{873899968120741685996204558210866348959652657270085413475567692313749924578778717090239305374484512444116919201}{165098093135649840614860251201297187743652657270085413475567692313749924578778717090239305374484512444116919201} to get \frac{43694998406037084299810227910543317447982632863504270673778384615687496228938935854511965268724225622205845960050}{70756325629564217406368679086270223318708281687179462918100439563035681962333735895816845160493362476050108229}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}