Solve for x
x=\frac{9}{13}\approx 0.692307692
Graph
Share
Copied to clipboard
\left(x+6\right)\times 20x+\left(5x+1\right)\times 6=4\left(x+6\right)\left(5x+1\right)
Variable x cannot be equal to any of the values -6,-\frac{1}{5} since division by zero is not defined. Multiply both sides of the equation by \left(x+6\right)\left(5x+1\right), the least common multiple of 5x+1,x+6.
\left(20x+120\right)x+\left(5x+1\right)\times 6=4\left(x+6\right)\left(5x+1\right)
Use the distributive property to multiply x+6 by 20.
20x^{2}+120x+\left(5x+1\right)\times 6=4\left(x+6\right)\left(5x+1\right)
Use the distributive property to multiply 20x+120 by x.
20x^{2}+120x+30x+6=4\left(x+6\right)\left(5x+1\right)
Use the distributive property to multiply 5x+1 by 6.
20x^{2}+150x+6=4\left(x+6\right)\left(5x+1\right)
Combine 120x and 30x to get 150x.
20x^{2}+150x+6=\left(4x+24\right)\left(5x+1\right)
Use the distributive property to multiply 4 by x+6.
20x^{2}+150x+6=20x^{2}+124x+24
Use the distributive property to multiply 4x+24 by 5x+1 and combine like terms.
20x^{2}+150x+6-20x^{2}=124x+24
Subtract 20x^{2} from both sides.
150x+6=124x+24
Combine 20x^{2} and -20x^{2} to get 0.
150x+6-124x=24
Subtract 124x from both sides.
26x+6=24
Combine 150x and -124x to get 26x.
26x=24-6
Subtract 6 from both sides.
26x=18
Subtract 6 from 24 to get 18.
x=\frac{18}{26}
Divide both sides by 26.
x=\frac{9}{13}
Reduce the fraction \frac{18}{26} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}