Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. y
Tick mark Image

Similar Problems from Web Search

Share

\frac{20^{1}x^{3}y^{5}}{\left(-5\right)^{1}x^{3}y^{1}}
Use the rules of exponents to simplify the expression.
\frac{20^{1}}{\left(-5\right)^{1}}x^{3-3}y^{5-1}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{20^{1}}{\left(-5\right)^{1}}x^{0}y^{5-1}
Subtract 3 from 3.
\frac{20^{1}}{\left(-5\right)^{1}}y^{5-1}
For any number a except 0, a^{0}=1.
\frac{20^{1}}{\left(-5\right)^{1}}y^{4}
Subtract 1 from 5.
-4y^{4}
Divide 20 by -5.
\frac{\mathrm{d}}{\mathrm{d}y}(\frac{4y^{4}}{-1})
Cancel out 5yx^{3} in both numerator and denominator.
\frac{\mathrm{d}}{\mathrm{d}y}(-4y^{4})
Anything divided by -1 gives its opposite.
4\left(-4\right)y^{4-1}
The derivative of ax^{n} is nax^{n-1}.
-16y^{4-1}
Multiply 4 times -4.
-16y^{3}
Subtract 1 from 4.