Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{20p+8}{p^{2}-p-8p+8}\times \frac{p-8}{18p+72}
Apply the distributive property by multiplying each term of p-8 by each term of p-1.
\frac{20p+8}{p^{2}-9p+8}\times \frac{p-8}{18p+72}
Combine -p and -8p to get -9p.
\frac{\left(20p+8\right)\left(p-8\right)}{\left(p^{2}-9p+8\right)\left(18p+72\right)}
Multiply \frac{20p+8}{p^{2}-9p+8} times \frac{p-8}{18p+72} by multiplying numerator times numerator and denominator times denominator.
\frac{4\left(p-8\right)\left(5p+2\right)}{18\left(p-8\right)\left(p-1\right)\left(p+4\right)}
Factor the expressions that are not already factored.
\frac{2\left(5p+2\right)}{9\left(p-1\right)\left(p+4\right)}
Cancel out 2\left(p-8\right) in both numerator and denominator.
\frac{10p+4}{9p^{2}+27p-36}
Expand the expression.
\frac{20p+8}{p^{2}-p-8p+8}\times \frac{p-8}{18p+72}
Apply the distributive property by multiplying each term of p-8 by each term of p-1.
\frac{20p+8}{p^{2}-9p+8}\times \frac{p-8}{18p+72}
Combine -p and -8p to get -9p.
\frac{\left(20p+8\right)\left(p-8\right)}{\left(p^{2}-9p+8\right)\left(18p+72\right)}
Multiply \frac{20p+8}{p^{2}-9p+8} times \frac{p-8}{18p+72} by multiplying numerator times numerator and denominator times denominator.
\frac{4\left(p-8\right)\left(5p+2\right)}{18\left(p-8\right)\left(p-1\right)\left(p+4\right)}
Factor the expressions that are not already factored.
\frac{2\left(5p+2\right)}{9\left(p-1\right)\left(p+4\right)}
Cancel out 2\left(p-8\right) in both numerator and denominator.
\frac{10p+4}{9p^{2}+27p-36}
Expand the expression.