Solve for x
x = -\frac{960}{23} = -41\frac{17}{23} \approx -41.739130435
Graph
Share
Copied to clipboard
\left(-x+8\right)\times 20x\times 8-8\times 120\left(x-8\right)\times 8=8\times 3\left(x-8\right)x
Variable x cannot be equal to any of the values 0,8 since division by zero is not defined. Multiply both sides of the equation by 64x\left(x-8\right), the least common multiple of -8x\times 8,x\left(x-8\right)\times 8.
\left(-x+8\right)\times 160x-8\times 120\left(x-8\right)\times 8=8\times 3\left(x-8\right)x
Multiply 20 and 8 to get 160.
\left(-160x+1280\right)x-8\times 120\left(x-8\right)\times 8=8\times 3\left(x-8\right)x
Use the distributive property to multiply -x+8 by 160.
-160x^{2}+1280x-8\times 120\left(x-8\right)\times 8=8\times 3\left(x-8\right)x
Use the distributive property to multiply -160x+1280 by x.
-160x^{2}+1280x-960\left(x-8\right)\times 8=8\times 3\left(x-8\right)x
Multiply -8 and 120 to get -960.
-160x^{2}+1280x-7680\left(x-8\right)=8\times 3\left(x-8\right)x
Multiply -960 and 8 to get -7680.
-160x^{2}+1280x-7680x+61440=8\times 3\left(x-8\right)x
Use the distributive property to multiply -7680 by x-8.
-160x^{2}-6400x+61440=8\times 3\left(x-8\right)x
Combine 1280x and -7680x to get -6400x.
-160x^{2}-6400x+61440=24\left(x-8\right)x
Multiply 8 and 3 to get 24.
-160x^{2}-6400x+61440=\left(24x-192\right)x
Use the distributive property to multiply 24 by x-8.
-160x^{2}-6400x+61440=24x^{2}-192x
Use the distributive property to multiply 24x-192 by x.
-160x^{2}-6400x+61440-24x^{2}=-192x
Subtract 24x^{2} from both sides.
-184x^{2}-6400x+61440=-192x
Combine -160x^{2} and -24x^{2} to get -184x^{2}.
-184x^{2}-6400x+61440+192x=0
Add 192x to both sides.
-184x^{2}-6208x+61440=0
Combine -6400x and 192x to get -6208x.
-23x^{2}-776x+7680=0
Divide both sides by 8.
a+b=-776 ab=-23\times 7680=-176640
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -23x^{2}+ax+bx+7680. To find a and b, set up a system to be solved.
1,-176640 2,-88320 3,-58880 4,-44160 5,-35328 6,-29440 8,-22080 10,-17664 12,-14720 15,-11776 16,-11040 20,-8832 23,-7680 24,-7360 30,-5888 32,-5520 40,-4416 46,-3840 48,-3680 60,-2944 64,-2760 69,-2560 80,-2208 92,-1920 96,-1840 115,-1536 120,-1472 128,-1380 138,-1280 160,-1104 184,-960 192,-920 230,-768 240,-736 256,-690 276,-640 320,-552 345,-512 368,-480 384,-460
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -176640.
1-176640=-176639 2-88320=-88318 3-58880=-58877 4-44160=-44156 5-35328=-35323 6-29440=-29434 8-22080=-22072 10-17664=-17654 12-14720=-14708 15-11776=-11761 16-11040=-11024 20-8832=-8812 23-7680=-7657 24-7360=-7336 30-5888=-5858 32-5520=-5488 40-4416=-4376 46-3840=-3794 48-3680=-3632 60-2944=-2884 64-2760=-2696 69-2560=-2491 80-2208=-2128 92-1920=-1828 96-1840=-1744 115-1536=-1421 120-1472=-1352 128-1380=-1252 138-1280=-1142 160-1104=-944 184-960=-776 192-920=-728 230-768=-538 240-736=-496 256-690=-434 276-640=-364 320-552=-232 345-512=-167 368-480=-112 384-460=-76
Calculate the sum for each pair.
a=184 b=-960
The solution is the pair that gives sum -776.
\left(-23x^{2}+184x\right)+\left(-960x+7680\right)
Rewrite -23x^{2}-776x+7680 as \left(-23x^{2}+184x\right)+\left(-960x+7680\right).
23x\left(-x+8\right)+960\left(-x+8\right)
Factor out 23x in the first and 960 in the second group.
\left(-x+8\right)\left(23x+960\right)
Factor out common term -x+8 by using distributive property.
x=8 x=-\frac{960}{23}
To find equation solutions, solve -x+8=0 and 23x+960=0.
x=-\frac{960}{23}
Variable x cannot be equal to 8.
\left(-x+8\right)\times 20x\times 8-8\times 120\left(x-8\right)\times 8=8\times 3\left(x-8\right)x
Variable x cannot be equal to any of the values 0,8 since division by zero is not defined. Multiply both sides of the equation by 64x\left(x-8\right), the least common multiple of -8x\times 8,x\left(x-8\right)\times 8.
\left(-x+8\right)\times 160x-8\times 120\left(x-8\right)\times 8=8\times 3\left(x-8\right)x
Multiply 20 and 8 to get 160.
\left(-160x+1280\right)x-8\times 120\left(x-8\right)\times 8=8\times 3\left(x-8\right)x
Use the distributive property to multiply -x+8 by 160.
-160x^{2}+1280x-8\times 120\left(x-8\right)\times 8=8\times 3\left(x-8\right)x
Use the distributive property to multiply -160x+1280 by x.
-160x^{2}+1280x-960\left(x-8\right)\times 8=8\times 3\left(x-8\right)x
Multiply -8 and 120 to get -960.
-160x^{2}+1280x-7680\left(x-8\right)=8\times 3\left(x-8\right)x
Multiply -960 and 8 to get -7680.
-160x^{2}+1280x-7680x+61440=8\times 3\left(x-8\right)x
Use the distributive property to multiply -7680 by x-8.
-160x^{2}-6400x+61440=8\times 3\left(x-8\right)x
Combine 1280x and -7680x to get -6400x.
-160x^{2}-6400x+61440=24\left(x-8\right)x
Multiply 8 and 3 to get 24.
-160x^{2}-6400x+61440=\left(24x-192\right)x
Use the distributive property to multiply 24 by x-8.
-160x^{2}-6400x+61440=24x^{2}-192x
Use the distributive property to multiply 24x-192 by x.
-160x^{2}-6400x+61440-24x^{2}=-192x
Subtract 24x^{2} from both sides.
-184x^{2}-6400x+61440=-192x
Combine -160x^{2} and -24x^{2} to get -184x^{2}.
-184x^{2}-6400x+61440+192x=0
Add 192x to both sides.
-184x^{2}-6208x+61440=0
Combine -6400x and 192x to get -6208x.
x=\frac{-\left(-6208\right)±\sqrt{\left(-6208\right)^{2}-4\left(-184\right)\times 61440}}{2\left(-184\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -184 for a, -6208 for b, and 61440 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-6208\right)±\sqrt{38539264-4\left(-184\right)\times 61440}}{2\left(-184\right)}
Square -6208.
x=\frac{-\left(-6208\right)±\sqrt{38539264+736\times 61440}}{2\left(-184\right)}
Multiply -4 times -184.
x=\frac{-\left(-6208\right)±\sqrt{38539264+45219840}}{2\left(-184\right)}
Multiply 736 times 61440.
x=\frac{-\left(-6208\right)±\sqrt{83759104}}{2\left(-184\right)}
Add 38539264 to 45219840.
x=\frac{-\left(-6208\right)±9152}{2\left(-184\right)}
Take the square root of 83759104.
x=\frac{6208±9152}{2\left(-184\right)}
The opposite of -6208 is 6208.
x=\frac{6208±9152}{-368}
Multiply 2 times -184.
x=\frac{15360}{-368}
Now solve the equation x=\frac{6208±9152}{-368} when ± is plus. Add 6208 to 9152.
x=-\frac{960}{23}
Reduce the fraction \frac{15360}{-368} to lowest terms by extracting and canceling out 16.
x=-\frac{2944}{-368}
Now solve the equation x=\frac{6208±9152}{-368} when ± is minus. Subtract 9152 from 6208.
x=8
Divide -2944 by -368.
x=-\frac{960}{23} x=8
The equation is now solved.
x=-\frac{960}{23}
Variable x cannot be equal to 8.
\left(-x+8\right)\times 20x\times 8-8\times 120\left(x-8\right)\times 8=8\times 3\left(x-8\right)x
Variable x cannot be equal to any of the values 0,8 since division by zero is not defined. Multiply both sides of the equation by 64x\left(x-8\right), the least common multiple of -8x\times 8,x\left(x-8\right)\times 8.
\left(-x+8\right)\times 160x-8\times 120\left(x-8\right)\times 8=8\times 3\left(x-8\right)x
Multiply 20 and 8 to get 160.
\left(-160x+1280\right)x-8\times 120\left(x-8\right)\times 8=8\times 3\left(x-8\right)x
Use the distributive property to multiply -x+8 by 160.
-160x^{2}+1280x-8\times 120\left(x-8\right)\times 8=8\times 3\left(x-8\right)x
Use the distributive property to multiply -160x+1280 by x.
-160x^{2}+1280x-960\left(x-8\right)\times 8=8\times 3\left(x-8\right)x
Multiply -8 and 120 to get -960.
-160x^{2}+1280x-7680\left(x-8\right)=8\times 3\left(x-8\right)x
Multiply -960 and 8 to get -7680.
-160x^{2}+1280x-7680x+61440=8\times 3\left(x-8\right)x
Use the distributive property to multiply -7680 by x-8.
-160x^{2}-6400x+61440=8\times 3\left(x-8\right)x
Combine 1280x and -7680x to get -6400x.
-160x^{2}-6400x+61440=24\left(x-8\right)x
Multiply 8 and 3 to get 24.
-160x^{2}-6400x+61440=\left(24x-192\right)x
Use the distributive property to multiply 24 by x-8.
-160x^{2}-6400x+61440=24x^{2}-192x
Use the distributive property to multiply 24x-192 by x.
-160x^{2}-6400x+61440-24x^{2}=-192x
Subtract 24x^{2} from both sides.
-184x^{2}-6400x+61440=-192x
Combine -160x^{2} and -24x^{2} to get -184x^{2}.
-184x^{2}-6400x+61440+192x=0
Add 192x to both sides.
-184x^{2}-6208x+61440=0
Combine -6400x and 192x to get -6208x.
-184x^{2}-6208x=-61440
Subtract 61440 from both sides. Anything subtracted from zero gives its negation.
\frac{-184x^{2}-6208x}{-184}=-\frac{61440}{-184}
Divide both sides by -184.
x^{2}+\left(-\frac{6208}{-184}\right)x=-\frac{61440}{-184}
Dividing by -184 undoes the multiplication by -184.
x^{2}+\frac{776}{23}x=-\frac{61440}{-184}
Reduce the fraction \frac{-6208}{-184} to lowest terms by extracting and canceling out 8.
x^{2}+\frac{776}{23}x=\frac{7680}{23}
Reduce the fraction \frac{-61440}{-184} to lowest terms by extracting and canceling out 8.
x^{2}+\frac{776}{23}x+\left(\frac{388}{23}\right)^{2}=\frac{7680}{23}+\left(\frac{388}{23}\right)^{2}
Divide \frac{776}{23}, the coefficient of the x term, by 2 to get \frac{388}{23}. Then add the square of \frac{388}{23} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{776}{23}x+\frac{150544}{529}=\frac{7680}{23}+\frac{150544}{529}
Square \frac{388}{23} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{776}{23}x+\frac{150544}{529}=\frac{327184}{529}
Add \frac{7680}{23} to \frac{150544}{529} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{388}{23}\right)^{2}=\frac{327184}{529}
Factor x^{2}+\frac{776}{23}x+\frac{150544}{529}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{388}{23}\right)^{2}}=\sqrt{\frac{327184}{529}}
Take the square root of both sides of the equation.
x+\frac{388}{23}=\frac{572}{23} x+\frac{388}{23}=-\frac{572}{23}
Simplify.
x=8 x=-\frac{960}{23}
Subtract \frac{388}{23} from both sides of the equation.
x=-\frac{960}{23}
Variable x cannot be equal to 8.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}