Solve for x
x = \frac{\sqrt{41} + 11}{2} \approx 8.701562119
x = \frac{11 - \sqrt{41}}{2} \approx 2.298437881
Graph
Share
Copied to clipboard
20+xx=11x
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x.
20+x^{2}=11x
Multiply x and x to get x^{2}.
20+x^{2}-11x=0
Subtract 11x from both sides.
x^{2}-11x+20=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-11\right)±\sqrt{\left(-11\right)^{2}-4\times 20}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -11 for b, and 20 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-11\right)±\sqrt{121-4\times 20}}{2}
Square -11.
x=\frac{-\left(-11\right)±\sqrt{121-80}}{2}
Multiply -4 times 20.
x=\frac{-\left(-11\right)±\sqrt{41}}{2}
Add 121 to -80.
x=\frac{11±\sqrt{41}}{2}
The opposite of -11 is 11.
x=\frac{\sqrt{41}+11}{2}
Now solve the equation x=\frac{11±\sqrt{41}}{2} when ± is plus. Add 11 to \sqrt{41}.
x=\frac{11-\sqrt{41}}{2}
Now solve the equation x=\frac{11±\sqrt{41}}{2} when ± is minus. Subtract \sqrt{41} from 11.
x=\frac{\sqrt{41}+11}{2} x=\frac{11-\sqrt{41}}{2}
The equation is now solved.
20+xx=11x
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x.
20+x^{2}=11x
Multiply x and x to get x^{2}.
20+x^{2}-11x=0
Subtract 11x from both sides.
x^{2}-11x=-20
Subtract 20 from both sides. Anything subtracted from zero gives its negation.
x^{2}-11x+\left(-\frac{11}{2}\right)^{2}=-20+\left(-\frac{11}{2}\right)^{2}
Divide -11, the coefficient of the x term, by 2 to get -\frac{11}{2}. Then add the square of -\frac{11}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-11x+\frac{121}{4}=-20+\frac{121}{4}
Square -\frac{11}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-11x+\frac{121}{4}=\frac{41}{4}
Add -20 to \frac{121}{4}.
\left(x-\frac{11}{2}\right)^{2}=\frac{41}{4}
Factor x^{2}-11x+\frac{121}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{11}{2}\right)^{2}}=\sqrt{\frac{41}{4}}
Take the square root of both sides of the equation.
x-\frac{11}{2}=\frac{\sqrt{41}}{2} x-\frac{11}{2}=-\frac{\sqrt{41}}{2}
Simplify.
x=\frac{\sqrt{41}+11}{2} x=\frac{11-\sqrt{41}}{2}
Add \frac{11}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}