Skip to main content
Solve for w
Tick mark Image

Similar Problems from Web Search

Share

20=2w\left(w-3\right)
Variable w cannot be equal to 3 since division by zero is not defined. Multiply both sides of the equation by w-3.
20=2w^{2}-6w
Use the distributive property to multiply 2w by w-3.
2w^{2}-6w=20
Swap sides so that all variable terms are on the left hand side.
2w^{2}-6w-20=0
Subtract 20 from both sides.
w=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times 2\left(-20\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -6 for b, and -20 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
w=\frac{-\left(-6\right)±\sqrt{36-4\times 2\left(-20\right)}}{2\times 2}
Square -6.
w=\frac{-\left(-6\right)±\sqrt{36-8\left(-20\right)}}{2\times 2}
Multiply -4 times 2.
w=\frac{-\left(-6\right)±\sqrt{36+160}}{2\times 2}
Multiply -8 times -20.
w=\frac{-\left(-6\right)±\sqrt{196}}{2\times 2}
Add 36 to 160.
w=\frac{-\left(-6\right)±14}{2\times 2}
Take the square root of 196.
w=\frac{6±14}{2\times 2}
The opposite of -6 is 6.
w=\frac{6±14}{4}
Multiply 2 times 2.
w=\frac{20}{4}
Now solve the equation w=\frac{6±14}{4} when ± is plus. Add 6 to 14.
w=5
Divide 20 by 4.
w=-\frac{8}{4}
Now solve the equation w=\frac{6±14}{4} when ± is minus. Subtract 14 from 6.
w=-2
Divide -8 by 4.
w=5 w=-2
The equation is now solved.
20=2w\left(w-3\right)
Variable w cannot be equal to 3 since division by zero is not defined. Multiply both sides of the equation by w-3.
20=2w^{2}-6w
Use the distributive property to multiply 2w by w-3.
2w^{2}-6w=20
Swap sides so that all variable terms are on the left hand side.
\frac{2w^{2}-6w}{2}=\frac{20}{2}
Divide both sides by 2.
w^{2}+\left(-\frac{6}{2}\right)w=\frac{20}{2}
Dividing by 2 undoes the multiplication by 2.
w^{2}-3w=\frac{20}{2}
Divide -6 by 2.
w^{2}-3w=10
Divide 20 by 2.
w^{2}-3w+\left(-\frac{3}{2}\right)^{2}=10+\left(-\frac{3}{2}\right)^{2}
Divide -3, the coefficient of the x term, by 2 to get -\frac{3}{2}. Then add the square of -\frac{3}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
w^{2}-3w+\frac{9}{4}=10+\frac{9}{4}
Square -\frac{3}{2} by squaring both the numerator and the denominator of the fraction.
w^{2}-3w+\frac{9}{4}=\frac{49}{4}
Add 10 to \frac{9}{4}.
\left(w-\frac{3}{2}\right)^{2}=\frac{49}{4}
Factor w^{2}-3w+\frac{9}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(w-\frac{3}{2}\right)^{2}}=\sqrt{\frac{49}{4}}
Take the square root of both sides of the equation.
w-\frac{3}{2}=\frac{7}{2} w-\frac{3}{2}=-\frac{7}{2}
Simplify.
w=5 w=-2
Add \frac{3}{2} to both sides of the equation.