Solve for r
r=-\frac{20}{x^{\frac{3}{2}}+x-22}
x\neq \frac{\sqrt[3]{66\sqrt{9735}+6337}+\sqrt[3]{6337-66\sqrt{9735}}+1}{3}\text{ and }x\geq 0
Share
Copied to clipboard
20+x\sqrt{x}r+rx=22r
Variable r cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by r.
20+x\sqrt{x}r+rx-22r=0
Subtract 22r from both sides.
x\sqrt{x}r+rx-22r=-20
Subtract 20 from both sides. Anything subtracted from zero gives its negation.
\left(x\sqrt{x}+x-22\right)r=-20
Combine all terms containing r.
\left(\sqrt{x}x+x-22\right)r=-20
The equation is in standard form.
\frac{\left(\sqrt{x}x+x-22\right)r}{\sqrt{x}x+x-22}=-\frac{20}{\sqrt{x}x+x-22}
Divide both sides by x\sqrt{x}+x-22.
r=-\frac{20}{\sqrt{x}x+x-22}
Dividing by x\sqrt{x}+x-22 undoes the multiplication by x\sqrt{x}+x-22.
r=-\frac{20}{x^{\frac{3}{2}}+x-22}
Divide -20 by x\sqrt{x}+x-22.
r=-\frac{20}{x^{\frac{3}{2}}+x-22}\text{, }r\neq 0
Variable r cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}