Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{20\left(2\sqrt{3}+\sqrt{2}\right)}{\left(2\sqrt{3}-\sqrt{2}\right)\left(2\sqrt{3}+\sqrt{2}\right)}
Rationalize the denominator of \frac{20}{2\sqrt{3}-\sqrt{2}} by multiplying numerator and denominator by 2\sqrt{3}+\sqrt{2}.
\frac{20\left(2\sqrt{3}+\sqrt{2}\right)}{\left(2\sqrt{3}\right)^{2}-\left(\sqrt{2}\right)^{2}}
Consider \left(2\sqrt{3}-\sqrt{2}\right)\left(2\sqrt{3}+\sqrt{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{20\left(2\sqrt{3}+\sqrt{2}\right)}{2^{2}\left(\sqrt{3}\right)^{2}-\left(\sqrt{2}\right)^{2}}
Expand \left(2\sqrt{3}\right)^{2}.
\frac{20\left(2\sqrt{3}+\sqrt{2}\right)}{4\left(\sqrt{3}\right)^{2}-\left(\sqrt{2}\right)^{2}}
Calculate 2 to the power of 2 and get 4.
\frac{20\left(2\sqrt{3}+\sqrt{2}\right)}{4\times 3-\left(\sqrt{2}\right)^{2}}
The square of \sqrt{3} is 3.
\frac{20\left(2\sqrt{3}+\sqrt{2}\right)}{12-\left(\sqrt{2}\right)^{2}}
Multiply 4 and 3 to get 12.
\frac{20\left(2\sqrt{3}+\sqrt{2}\right)}{12-2}
The square of \sqrt{2} is 2.
\frac{20\left(2\sqrt{3}+\sqrt{2}\right)}{10}
Subtract 2 from 12 to get 10.
2\left(2\sqrt{3}+\sqrt{2}\right)
Divide 20\left(2\sqrt{3}+\sqrt{2}\right) by 10 to get 2\left(2\sqrt{3}+\sqrt{2}\right).
4\sqrt{3}+2\sqrt{2}
Use the distributive property to multiply 2 by 2\sqrt{3}+\sqrt{2}.