\frac { 2.67 ( 1 + 9.8 \% ) } { 1.77 }
Evaluate
\frac{48861}{29500}\approx 1.656305085
Factor
\frac{61 \cdot 89 \cdot 3 ^ {2}}{59 \cdot 2 ^ {2} \cdot 5 ^ {3}} = 1\frac{19361}{29500} = 1.6563050847457628
Share
Copied to clipboard
\frac{2.67\left(1+\frac{98}{1000}\right)}{1.77}
Expand \frac{9.8}{100} by multiplying both numerator and the denominator by 10.
\frac{2.67\left(1+\frac{49}{500}\right)}{1.77}
Reduce the fraction \frac{98}{1000} to lowest terms by extracting and canceling out 2.
\frac{2.67\left(\frac{500}{500}+\frac{49}{500}\right)}{1.77}
Convert 1 to fraction \frac{500}{500}.
\frac{2.67\times \frac{500+49}{500}}{1.77}
Since \frac{500}{500} and \frac{49}{500} have the same denominator, add them by adding their numerators.
\frac{2.67\times \frac{549}{500}}{1.77}
Add 500 and 49 to get 549.
\frac{\frac{267}{100}\times \frac{549}{500}}{1.77}
Convert decimal number 2.67 to fraction \frac{267}{100}.
\frac{\frac{267\times 549}{100\times 500}}{1.77}
Multiply \frac{267}{100} times \frac{549}{500} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{146583}{50000}}{1.77}
Do the multiplications in the fraction \frac{267\times 549}{100\times 500}.
\frac{146583}{50000\times 1.77}
Express \frac{\frac{146583}{50000}}{1.77} as a single fraction.
\frac{146583}{88500}
Multiply 50000 and 1.77 to get 88500.
\frac{48861}{29500}
Reduce the fraction \frac{146583}{88500} to lowest terms by extracting and canceling out 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}