\frac { 2,5 } { 4 } = \frac { 7,5 } { y }
Solve for y
y=12
Graph
Share
Copied to clipboard
y\times 2,5=4\times 7,5
Variable y cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 4y, the least common multiple of 4;y.
y\times 2,5=30
Multiply 4 and 7,5 to get 30.
y=\frac{30}{2,5}
Divide both sides by 2,5.
y=\frac{300}{25}
Expand \frac{30}{2,5} by multiplying both numerator and the denominator by 10.
y=12
Divide 300 by 25 to get 12.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}