\frac { 2,5 } { 1,2 } = \frac { 1,45 } { x }
Solve for x
x=0,696
Graph
Share
Copied to clipboard
x\times \frac{2,5}{1,2}=1,45
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x.
x\times \frac{25}{12}=1,45
Expand \frac{2,5}{1,2} by multiplying both numerator and the denominator by 10.
x=1,45\times \frac{12}{25}
Multiply both sides by \frac{12}{25}, the reciprocal of \frac{25}{12}.
x=\frac{29}{20}\times \frac{12}{25}
Convert decimal number 1,45 to fraction \frac{145}{100}. Reduce the fraction \frac{145}{100} to lowest terms by extracting and canceling out 5.
x=\frac{29\times 12}{20\times 25}
Multiply \frac{29}{20} times \frac{12}{25} by multiplying numerator times numerator and denominator times denominator.
x=\frac{348}{500}
Do the multiplications in the fraction \frac{29\times 12}{20\times 25}.
x=\frac{87}{125}
Reduce the fraction \frac{348}{500} to lowest terms by extracting and canceling out 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}