Evaluate
\frac{2z^{2}+8z-17}{\left(z-2\right)\left(z-1\right)\left(z+6\right)}
Expand
\frac{2z^{2}+8z-17}{\left(z-2\right)\left(z-1\right)\left(z+6\right)}
Share
Copied to clipboard
\frac{2z+3}{\left(z-2\right)\left(z+6\right)}+\frac{7}{\left(z-1\right)\left(z+6\right)}
Factor z^{2}+4z-12. Factor z^{2}+5z-6.
\frac{\left(2z+3\right)\left(z-1\right)}{\left(z-2\right)\left(z-1\right)\left(z+6\right)}+\frac{7\left(z-2\right)}{\left(z-2\right)\left(z-1\right)\left(z+6\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(z-2\right)\left(z+6\right) and \left(z-1\right)\left(z+6\right) is \left(z-2\right)\left(z-1\right)\left(z+6\right). Multiply \frac{2z+3}{\left(z-2\right)\left(z+6\right)} times \frac{z-1}{z-1}. Multiply \frac{7}{\left(z-1\right)\left(z+6\right)} times \frac{z-2}{z-2}.
\frac{\left(2z+3\right)\left(z-1\right)+7\left(z-2\right)}{\left(z-2\right)\left(z-1\right)\left(z+6\right)}
Since \frac{\left(2z+3\right)\left(z-1\right)}{\left(z-2\right)\left(z-1\right)\left(z+6\right)} and \frac{7\left(z-2\right)}{\left(z-2\right)\left(z-1\right)\left(z+6\right)} have the same denominator, add them by adding their numerators.
\frac{2z^{2}-2z+3z-3+7z-14}{\left(z-2\right)\left(z-1\right)\left(z+6\right)}
Do the multiplications in \left(2z+3\right)\left(z-1\right)+7\left(z-2\right).
\frac{2z^{2}+8z-17}{\left(z-2\right)\left(z-1\right)\left(z+6\right)}
Combine like terms in 2z^{2}-2z+3z-3+7z-14.
\frac{2z^{2}+8z-17}{z^{3}+3z^{2}-16z+12}
Expand \left(z-2\right)\left(z-1\right)\left(z+6\right).
\frac{2z+3}{\left(z-2\right)\left(z+6\right)}+\frac{7}{\left(z-1\right)\left(z+6\right)}
Factor z^{2}+4z-12. Factor z^{2}+5z-6.
\frac{\left(2z+3\right)\left(z-1\right)}{\left(z-2\right)\left(z-1\right)\left(z+6\right)}+\frac{7\left(z-2\right)}{\left(z-2\right)\left(z-1\right)\left(z+6\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(z-2\right)\left(z+6\right) and \left(z-1\right)\left(z+6\right) is \left(z-2\right)\left(z-1\right)\left(z+6\right). Multiply \frac{2z+3}{\left(z-2\right)\left(z+6\right)} times \frac{z-1}{z-1}. Multiply \frac{7}{\left(z-1\right)\left(z+6\right)} times \frac{z-2}{z-2}.
\frac{\left(2z+3\right)\left(z-1\right)+7\left(z-2\right)}{\left(z-2\right)\left(z-1\right)\left(z+6\right)}
Since \frac{\left(2z+3\right)\left(z-1\right)}{\left(z-2\right)\left(z-1\right)\left(z+6\right)} and \frac{7\left(z-2\right)}{\left(z-2\right)\left(z-1\right)\left(z+6\right)} have the same denominator, add them by adding their numerators.
\frac{2z^{2}-2z+3z-3+7z-14}{\left(z-2\right)\left(z-1\right)\left(z+6\right)}
Do the multiplications in \left(2z+3\right)\left(z-1\right)+7\left(z-2\right).
\frac{2z^{2}+8z-17}{\left(z-2\right)\left(z-1\right)\left(z+6\right)}
Combine like terms in 2z^{2}-2z+3z-3+7z-14.
\frac{2z^{2}+8z-17}{z^{3}+3z^{2}-16z+12}
Expand \left(z-2\right)\left(z-1\right)\left(z+6\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}