Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{2z+3}{\left(z-2\right)\left(z+6\right)}+\frac{7}{\left(z-1\right)\left(z+6\right)}
Factor z^{2}+4z-12. Factor z^{2}+5z-6.
\frac{\left(2z+3\right)\left(z-1\right)}{\left(z-2\right)\left(z-1\right)\left(z+6\right)}+\frac{7\left(z-2\right)}{\left(z-2\right)\left(z-1\right)\left(z+6\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(z-2\right)\left(z+6\right) and \left(z-1\right)\left(z+6\right) is \left(z-2\right)\left(z-1\right)\left(z+6\right). Multiply \frac{2z+3}{\left(z-2\right)\left(z+6\right)} times \frac{z-1}{z-1}. Multiply \frac{7}{\left(z-1\right)\left(z+6\right)} times \frac{z-2}{z-2}.
\frac{\left(2z+3\right)\left(z-1\right)+7\left(z-2\right)}{\left(z-2\right)\left(z-1\right)\left(z+6\right)}
Since \frac{\left(2z+3\right)\left(z-1\right)}{\left(z-2\right)\left(z-1\right)\left(z+6\right)} and \frac{7\left(z-2\right)}{\left(z-2\right)\left(z-1\right)\left(z+6\right)} have the same denominator, add them by adding their numerators.
\frac{2z^{2}-2z+3z-3+7z-14}{\left(z-2\right)\left(z-1\right)\left(z+6\right)}
Do the multiplications in \left(2z+3\right)\left(z-1\right)+7\left(z-2\right).
\frac{2z^{2}+8z-17}{\left(z-2\right)\left(z-1\right)\left(z+6\right)}
Combine like terms in 2z^{2}-2z+3z-3+7z-14.
\frac{2z^{2}+8z-17}{z^{3}+3z^{2}-16z+12}
Expand \left(z-2\right)\left(z-1\right)\left(z+6\right).
\frac{2z+3}{\left(z-2\right)\left(z+6\right)}+\frac{7}{\left(z-1\right)\left(z+6\right)}
Factor z^{2}+4z-12. Factor z^{2}+5z-6.
\frac{\left(2z+3\right)\left(z-1\right)}{\left(z-2\right)\left(z-1\right)\left(z+6\right)}+\frac{7\left(z-2\right)}{\left(z-2\right)\left(z-1\right)\left(z+6\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(z-2\right)\left(z+6\right) and \left(z-1\right)\left(z+6\right) is \left(z-2\right)\left(z-1\right)\left(z+6\right). Multiply \frac{2z+3}{\left(z-2\right)\left(z+6\right)} times \frac{z-1}{z-1}. Multiply \frac{7}{\left(z-1\right)\left(z+6\right)} times \frac{z-2}{z-2}.
\frac{\left(2z+3\right)\left(z-1\right)+7\left(z-2\right)}{\left(z-2\right)\left(z-1\right)\left(z+6\right)}
Since \frac{\left(2z+3\right)\left(z-1\right)}{\left(z-2\right)\left(z-1\right)\left(z+6\right)} and \frac{7\left(z-2\right)}{\left(z-2\right)\left(z-1\right)\left(z+6\right)} have the same denominator, add them by adding their numerators.
\frac{2z^{2}-2z+3z-3+7z-14}{\left(z-2\right)\left(z-1\right)\left(z+6\right)}
Do the multiplications in \left(2z+3\right)\left(z-1\right)+7\left(z-2\right).
\frac{2z^{2}+8z-17}{\left(z-2\right)\left(z-1\right)\left(z+6\right)}
Combine like terms in 2z^{2}-2z+3z-3+7z-14.
\frac{2z^{2}+8z-17}{z^{3}+3z^{2}-16z+12}
Expand \left(z-2\right)\left(z-1\right)\left(z+6\right).