Solve for y
y=\frac{3}{4}=0.75
Graph
Share
Copied to clipboard
\frac{2y-9}{10}+\frac{3\times 5}{10}=y
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 10 and 2 is 10. Multiply \frac{3}{2} times \frac{5}{5}.
\frac{2y-9+3\times 5}{10}=y
Since \frac{2y-9}{10} and \frac{3\times 5}{10} have the same denominator, add them by adding their numerators.
\frac{2y-9+15}{10}=y
Do the multiplications in 2y-9+3\times 5.
\frac{2y+6}{10}=y
Combine like terms in 2y-9+15.
\frac{1}{5}y+\frac{3}{5}=y
Divide each term of 2y+6 by 10 to get \frac{1}{5}y+\frac{3}{5}.
\frac{1}{5}y+\frac{3}{5}-y=0
Subtract y from both sides.
-\frac{4}{5}y+\frac{3}{5}=0
Combine \frac{1}{5}y and -y to get -\frac{4}{5}y.
-\frac{4}{5}y=-\frac{3}{5}
Subtract \frac{3}{5} from both sides. Anything subtracted from zero gives its negation.
y=-\frac{3}{5}\left(-\frac{5}{4}\right)
Multiply both sides by -\frac{5}{4}, the reciprocal of -\frac{4}{5}.
y=\frac{-3\left(-5\right)}{5\times 4}
Multiply -\frac{3}{5} times -\frac{5}{4} by multiplying numerator times numerator and denominator times denominator.
y=\frac{15}{20}
Do the multiplications in the fraction \frac{-3\left(-5\right)}{5\times 4}.
y=\frac{3}{4}
Reduce the fraction \frac{15}{20} to lowest terms by extracting and canceling out 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}