Evaluate
\frac{2xy-16x+5y}{10\left(xy\right)^{2}}
Expand
\frac{2xy-16x+5y}{10\left(xy\right)^{2}}
Share
Copied to clipboard
\frac{\left(2y-8\right)\times 2x}{10x^{2}y^{2}}+\frac{\left(5-2x\right)y}{10x^{2}y^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 5xy^{2} and 10x^{2}y is 10x^{2}y^{2}. Multiply \frac{2y-8}{5xy^{2}} times \frac{2x}{2x}. Multiply \frac{5-2x}{10x^{2}y} times \frac{y}{y}.
\frac{\left(2y-8\right)\times 2x+\left(5-2x\right)y}{10x^{2}y^{2}}
Since \frac{\left(2y-8\right)\times 2x}{10x^{2}y^{2}} and \frac{\left(5-2x\right)y}{10x^{2}y^{2}} have the same denominator, add them by adding their numerators.
\frac{4yx-16x+5y-2xy}{10x^{2}y^{2}}
Do the multiplications in \left(2y-8\right)\times 2x+\left(5-2x\right)y.
\frac{2yx-16x+5y}{10x^{2}y^{2}}
Combine like terms in 4yx-16x+5y-2xy.
\frac{\left(2y-8\right)\times 2x}{10x^{2}y^{2}}+\frac{\left(5-2x\right)y}{10x^{2}y^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 5xy^{2} and 10x^{2}y is 10x^{2}y^{2}. Multiply \frac{2y-8}{5xy^{2}} times \frac{2x}{2x}. Multiply \frac{5-2x}{10x^{2}y} times \frac{y}{y}.
\frac{\left(2y-8\right)\times 2x+\left(5-2x\right)y}{10x^{2}y^{2}}
Since \frac{\left(2y-8\right)\times 2x}{10x^{2}y^{2}} and \frac{\left(5-2x\right)y}{10x^{2}y^{2}} have the same denominator, add them by adding their numerators.
\frac{4yx-16x+5y-2xy}{10x^{2}y^{2}}
Do the multiplications in \left(2y-8\right)\times 2x+\left(5-2x\right)y.
\frac{2yx-16x+5y}{10x^{2}y^{2}}
Combine like terms in 4yx-16x+5y-2xy.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}