Solve for y
y=-\frac{2}{5}=-0.4
Graph
Share
Copied to clipboard
4\left(2y-1\right)=3\left(y+2\right)-12
Multiply both sides of the equation by 12, the least common multiple of 3,4.
8y-4=3\left(y+2\right)-12
Use the distributive property to multiply 4 by 2y-1.
8y-4=3y+6-12
Use the distributive property to multiply 3 by y+2.
8y-4=3y-6
Subtract 12 from 6 to get -6.
8y-4-3y=-6
Subtract 3y from both sides.
5y-4=-6
Combine 8y and -3y to get 5y.
5y=-6+4
Add 4 to both sides.
5y=-2
Add -6 and 4 to get -2.
y=\frac{-2}{5}
Divide both sides by 5.
y=-\frac{2}{5}
Fraction \frac{-2}{5} can be rewritten as -\frac{2}{5} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}