Solve for y
y = \frac{\sqrt{1281} + 9}{20} \approx 2.239553017
y=\frac{9-\sqrt{1281}}{20}\approx -1.339553017
Graph
Quiz
Quadratic Equation
5 problems similar to:
\frac { 2 y } { 3 } = \frac { 3 } { 5 } + \frac { 2 } { y }
Share
Copied to clipboard
5y\times 2y=15y\times \frac{3}{5}+15\times 2
Variable y cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 15y, the least common multiple of 3,5,y.
10yy=15y\times \frac{3}{5}+15\times 2
Multiply 5 and 2 to get 10.
10y^{2}=15y\times \frac{3}{5}+15\times 2
Multiply y and y to get y^{2}.
10y^{2}=\frac{15\times 3}{5}y+15\times 2
Express 15\times \frac{3}{5} as a single fraction.
10y^{2}=\frac{45}{5}y+15\times 2
Multiply 15 and 3 to get 45.
10y^{2}=9y+15\times 2
Divide 45 by 5 to get 9.
10y^{2}=9y+30
Multiply 15 and 2 to get 30.
10y^{2}-9y=30
Subtract 9y from both sides.
10y^{2}-9y-30=0
Subtract 30 from both sides.
y=\frac{-\left(-9\right)±\sqrt{\left(-9\right)^{2}-4\times 10\left(-30\right)}}{2\times 10}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 10 for a, -9 for b, and -30 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-9\right)±\sqrt{81-4\times 10\left(-30\right)}}{2\times 10}
Square -9.
y=\frac{-\left(-9\right)±\sqrt{81-40\left(-30\right)}}{2\times 10}
Multiply -4 times 10.
y=\frac{-\left(-9\right)±\sqrt{81+1200}}{2\times 10}
Multiply -40 times -30.
y=\frac{-\left(-9\right)±\sqrt{1281}}{2\times 10}
Add 81 to 1200.
y=\frac{9±\sqrt{1281}}{2\times 10}
The opposite of -9 is 9.
y=\frac{9±\sqrt{1281}}{20}
Multiply 2 times 10.
y=\frac{\sqrt{1281}+9}{20}
Now solve the equation y=\frac{9±\sqrt{1281}}{20} when ± is plus. Add 9 to \sqrt{1281}.
y=\frac{9-\sqrt{1281}}{20}
Now solve the equation y=\frac{9±\sqrt{1281}}{20} when ± is minus. Subtract \sqrt{1281} from 9.
y=\frac{\sqrt{1281}+9}{20} y=\frac{9-\sqrt{1281}}{20}
The equation is now solved.
5y\times 2y=15y\times \frac{3}{5}+15\times 2
Variable y cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 15y, the least common multiple of 3,5,y.
10yy=15y\times \frac{3}{5}+15\times 2
Multiply 5 and 2 to get 10.
10y^{2}=15y\times \frac{3}{5}+15\times 2
Multiply y and y to get y^{2}.
10y^{2}=\frac{15\times 3}{5}y+15\times 2
Express 15\times \frac{3}{5} as a single fraction.
10y^{2}=\frac{45}{5}y+15\times 2
Multiply 15 and 3 to get 45.
10y^{2}=9y+15\times 2
Divide 45 by 5 to get 9.
10y^{2}=9y+30
Multiply 15 and 2 to get 30.
10y^{2}-9y=30
Subtract 9y from both sides.
\frac{10y^{2}-9y}{10}=\frac{30}{10}
Divide both sides by 10.
y^{2}-\frac{9}{10}y=\frac{30}{10}
Dividing by 10 undoes the multiplication by 10.
y^{2}-\frac{9}{10}y=3
Divide 30 by 10.
y^{2}-\frac{9}{10}y+\left(-\frac{9}{20}\right)^{2}=3+\left(-\frac{9}{20}\right)^{2}
Divide -\frac{9}{10}, the coefficient of the x term, by 2 to get -\frac{9}{20}. Then add the square of -\frac{9}{20} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
y^{2}-\frac{9}{10}y+\frac{81}{400}=3+\frac{81}{400}
Square -\frac{9}{20} by squaring both the numerator and the denominator of the fraction.
y^{2}-\frac{9}{10}y+\frac{81}{400}=\frac{1281}{400}
Add 3 to \frac{81}{400}.
\left(y-\frac{9}{20}\right)^{2}=\frac{1281}{400}
Factor y^{2}-\frac{9}{10}y+\frac{81}{400}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y-\frac{9}{20}\right)^{2}}=\sqrt{\frac{1281}{400}}
Take the square root of both sides of the equation.
y-\frac{9}{20}=\frac{\sqrt{1281}}{20} y-\frac{9}{20}=-\frac{\sqrt{1281}}{20}
Simplify.
y=\frac{\sqrt{1281}+9}{20} y=\frac{9-\sqrt{1281}}{20}
Add \frac{9}{20} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}