Solve for x (complex solution)
x\neq 0
y=-\sqrt[4]{3}\text{ or }y=\sqrt[4]{3}\text{ or }y=-\sqrt[4]{3}i\text{ or }y=\sqrt[4]{3}i
Solve for x
x\neq 0
|y|=\sqrt[4]{3}
Solve for y (complex solution)
y=\sqrt[4]{3}i
y=\sqrt[4]{3}
y=-\sqrt[4]{3}
y=-\sqrt[4]{3}i\text{, }x\neq 0
Solve for y
y=\sqrt[4]{3}
y=-\sqrt[4]{3}\text{, }x\neq 0
Share
Copied to clipboard
3\times 2y^{3}\times 3xy^{3}=y^{4}x\times 2y^{6}\times 3
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 9x^{2}y^{4}, the least common multiple of 3x^{2}y^{4},3^{2}x.
3\times 2y^{6}\times 3x=y^{4}x\times 2y^{6}\times 3
To multiply powers of the same base, add their exponents. Add 3 and 3 to get 6.
6y^{6}\times 3x=y^{4}x\times 2y^{6}\times 3
Multiply 3 and 2 to get 6.
18y^{6}x=y^{4}x\times 2y^{6}\times 3
Multiply 6 and 3 to get 18.
18y^{6}x=y^{10}x\times 2\times 3
To multiply powers of the same base, add their exponents. Add 4 and 6 to get 10.
18y^{6}x=y^{10}x\times 6
Multiply 2 and 3 to get 6.
18y^{6}x-y^{10}x\times 6=0
Subtract y^{10}x\times 6 from both sides.
18y^{6}x-6y^{10}x=0
Multiply -1 and 6 to get -6.
\left(18y^{6}-6y^{10}\right)x=0
Combine all terms containing x.
x=0
Divide 0 by 18y^{6}-6y^{10}.
x\in \emptyset
Variable x cannot be equal to 0.
3\times 2y^{3}\times 3xy^{3}=y^{4}x\times 2y^{6}\times 3
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 9x^{2}y^{4}, the least common multiple of 3x^{2}y^{4},3^{2}x.
3\times 2y^{6}\times 3x=y^{4}x\times 2y^{6}\times 3
To multiply powers of the same base, add their exponents. Add 3 and 3 to get 6.
6y^{6}\times 3x=y^{4}x\times 2y^{6}\times 3
Multiply 3 and 2 to get 6.
18y^{6}x=y^{4}x\times 2y^{6}\times 3
Multiply 6 and 3 to get 18.
18y^{6}x=y^{10}x\times 2\times 3
To multiply powers of the same base, add their exponents. Add 4 and 6 to get 10.
18y^{6}x=y^{10}x\times 6
Multiply 2 and 3 to get 6.
18y^{6}x-y^{10}x\times 6=0
Subtract y^{10}x\times 6 from both sides.
18y^{6}x-6y^{10}x=0
Multiply -1 and 6 to get -6.
\left(18y^{6}-6y^{10}\right)x=0
Combine all terms containing x.
x=0
Divide 0 by 18y^{6}-6y^{10}.
x\in \emptyset
Variable x cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}