Solve for y (complex solution)
y=\sqrt{\sqrt{5}+1}\approx 1.79890744
y=-\sqrt{\sqrt{5}+1}\approx -1.79890744
y=-i\sqrt{\sqrt{5}-1}\approx -0-1.111785941i
y=i\sqrt{\sqrt{5}-1}\approx 1.111785941i
Solve for y
y=\sqrt{\sqrt{5}+1}\approx 1.79890744
y=-\sqrt{\sqrt{5}+1}\approx -1.79890744
Graph
Quiz
Quadratic Equation
5 problems similar to:
\frac { 2 y ^ { 2 } - 8 } { y ^ { 2 } } = 6 - 2 y ^ { 2 }
Share
Copied to clipboard
2y^{2}-8=y^{2}\times 6-2y^{2}y^{2}
Variable y cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by y^{2}.
2y^{2}-8=y^{2}\times 6-2y^{4}
To multiply powers of the same base, add their exponents. Add 2 and 2 to get 4.
2y^{2}-8-y^{2}\times 6=-2y^{4}
Subtract y^{2}\times 6 from both sides.
-4y^{2}-8=-2y^{4}
Combine 2y^{2} and -y^{2}\times 6 to get -4y^{2}.
-4y^{2}-8+2y^{4}=0
Add 2y^{4} to both sides.
2t^{2}-4t-8=0
Substitute t for y^{2}.
t=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 2\left(-8\right)}}{2\times 2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 2 for a, -4 for b, and -8 for c in the quadratic formula.
t=\frac{4±4\sqrt{5}}{4}
Do the calculations.
t=\sqrt{5}+1 t=1-\sqrt{5}
Solve the equation t=\frac{4±4\sqrt{5}}{4} when ± is plus and when ± is minus.
y=-\sqrt{\sqrt{5}+1} y=\sqrt{\sqrt{5}+1} y=-i\sqrt{-\left(1-\sqrt{5}\right)} y=i\sqrt{-\left(1-\sqrt{5}\right)}
Since y=t^{2}, the solutions are obtained by evaluating y=±\sqrt{t} for each t.
2y^{2}-8=y^{2}\times 6-2y^{2}y^{2}
Variable y cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by y^{2}.
2y^{2}-8=y^{2}\times 6-2y^{4}
To multiply powers of the same base, add their exponents. Add 2 and 2 to get 4.
2y^{2}-8-y^{2}\times 6=-2y^{4}
Subtract y^{2}\times 6 from both sides.
-4y^{2}-8=-2y^{4}
Combine 2y^{2} and -y^{2}\times 6 to get -4y^{2}.
-4y^{2}-8+2y^{4}=0
Add 2y^{4} to both sides.
2t^{2}-4t-8=0
Substitute t for y^{2}.
t=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 2\left(-8\right)}}{2\times 2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 2 for a, -4 for b, and -8 for c in the quadratic formula.
t=\frac{4±4\sqrt{5}}{4}
Do the calculations.
t=\sqrt{5}+1 t=1-\sqrt{5}
Solve the equation t=\frac{4±4\sqrt{5}}{4} when ± is plus and when ± is minus.
y=\sqrt{\sqrt{5}+1} y=-\sqrt{\sqrt{5}+1}
Since y=t^{2}, the solutions are obtained by evaluating y=±\sqrt{t} for positive t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}