Solve for y (complex solution)
y = \frac{\sqrt{7 {(\sqrt{1905} + 41)}}}{14} \approx 1.738701339
y = -\frac{\sqrt{7 {(\sqrt{1905} + 41)}}}{14} \approx -1.738701339
y=-\frac{i\sqrt{7\left(\sqrt{1905}-41\right)}}{14}\approx -0-0.30742628i
y=\frac{i\sqrt{7\left(\sqrt{1905}-41\right)}}{14}\approx 0.30742628i
Solve for y
y = \frac{\sqrt{7 {(\sqrt{1905} + 41)}}}{14} \approx 1.738701339
y = -\frac{\sqrt{7 {(\sqrt{1905} + 41)}}}{14} \approx -1.738701339
Graph
Share
Copied to clipboard
2y^{2}-8=14y^{2}\times 6-2y^{2}\times 14y^{2}
Variable y cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 14y^{2}.
2y^{2}-8=14y^{2}\times 6-2y^{4}\times 14
To multiply powers of the same base, add their exponents. Add 2 and 2 to get 4.
2y^{2}-8=84y^{2}-2y^{4}\times 14
Multiply 14 and 6 to get 84.
2y^{2}-8=84y^{2}-28y^{4}
Multiply -2 and 14 to get -28.
2y^{2}-8-84y^{2}=-28y^{4}
Subtract 84y^{2} from both sides.
-82y^{2}-8=-28y^{4}
Combine 2y^{2} and -84y^{2} to get -82y^{2}.
-82y^{2}-8+28y^{4}=0
Add 28y^{4} to both sides.
28t^{2}-82t-8=0
Substitute t for y^{2}.
t=\frac{-\left(-82\right)±\sqrt{\left(-82\right)^{2}-4\times 28\left(-8\right)}}{2\times 28}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 28 for a, -82 for b, and -8 for c in the quadratic formula.
t=\frac{82±2\sqrt{1905}}{56}
Do the calculations.
t=\frac{\sqrt{1905}+41}{28} t=\frac{41-\sqrt{1905}}{28}
Solve the equation t=\frac{82±2\sqrt{1905}}{56} when ± is plus and when ± is minus.
y=-\sqrt{\frac{\sqrt{1905}+41}{28}} y=\sqrt{\frac{\sqrt{1905}+41}{28}} y=-i\sqrt{-\frac{41-\sqrt{1905}}{28}} y=i\sqrt{-\frac{41-\sqrt{1905}}{28}}
Since y=t^{2}, the solutions are obtained by evaluating y=±\sqrt{t} for each t.
2y^{2}-8=14y^{2}\times 6-2y^{2}\times 14y^{2}
Variable y cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 14y^{2}.
2y^{2}-8=14y^{2}\times 6-2y^{4}\times 14
To multiply powers of the same base, add their exponents. Add 2 and 2 to get 4.
2y^{2}-8=84y^{2}-2y^{4}\times 14
Multiply 14 and 6 to get 84.
2y^{2}-8=84y^{2}-28y^{4}
Multiply -2 and 14 to get -28.
2y^{2}-8-84y^{2}=-28y^{4}
Subtract 84y^{2} from both sides.
-82y^{2}-8=-28y^{4}
Combine 2y^{2} and -84y^{2} to get -82y^{2}.
-82y^{2}-8+28y^{4}=0
Add 28y^{4} to both sides.
28t^{2}-82t-8=0
Substitute t for y^{2}.
t=\frac{-\left(-82\right)±\sqrt{\left(-82\right)^{2}-4\times 28\left(-8\right)}}{2\times 28}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 28 for a, -82 for b, and -8 for c in the quadratic formula.
t=\frac{82±2\sqrt{1905}}{56}
Do the calculations.
t=\frac{\sqrt{1905}+41}{28} t=\frac{41-\sqrt{1905}}{28}
Solve the equation t=\frac{82±2\sqrt{1905}}{56} when ± is plus and when ± is minus.
y=\frac{\sqrt{\frac{\sqrt{1905}+41}{7}}}{2} y=-\frac{\sqrt{\frac{\sqrt{1905}+41}{7}}}{2}
Since y=t^{2}, the solutions are obtained by evaluating y=±\sqrt{t} for positive t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}