Skip to main content
Solve for y (complex solution)
Tick mark Image
Solve for y
Tick mark Image
Graph

Similar Problems from Web Search

Share

2y^{2}-8=14y^{2}\times 6-2y^{2}\times 14y^{2}
Variable y cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 14y^{2}.
2y^{2}-8=14y^{2}\times 6-2y^{4}\times 14
To multiply powers of the same base, add their exponents. Add 2 and 2 to get 4.
2y^{2}-8=84y^{2}-2y^{4}\times 14
Multiply 14 and 6 to get 84.
2y^{2}-8=84y^{2}-28y^{4}
Multiply -2 and 14 to get -28.
2y^{2}-8-84y^{2}=-28y^{4}
Subtract 84y^{2} from both sides.
-82y^{2}-8=-28y^{4}
Combine 2y^{2} and -84y^{2} to get -82y^{2}.
-82y^{2}-8+28y^{4}=0
Add 28y^{4} to both sides.
28t^{2}-82t-8=0
Substitute t for y^{2}.
t=\frac{-\left(-82\right)±\sqrt{\left(-82\right)^{2}-4\times 28\left(-8\right)}}{2\times 28}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 28 for a, -82 for b, and -8 for c in the quadratic formula.
t=\frac{82±2\sqrt{1905}}{56}
Do the calculations.
t=\frac{\sqrt{1905}+41}{28} t=\frac{41-\sqrt{1905}}{28}
Solve the equation t=\frac{82±2\sqrt{1905}}{56} when ± is plus and when ± is minus.
y=-\sqrt{\frac{\sqrt{1905}+41}{28}} y=\sqrt{\frac{\sqrt{1905}+41}{28}} y=-i\sqrt{-\frac{41-\sqrt{1905}}{28}} y=i\sqrt{-\frac{41-\sqrt{1905}}{28}}
Since y=t^{2}, the solutions are obtained by evaluating y=±\sqrt{t} for each t.
2y^{2}-8=14y^{2}\times 6-2y^{2}\times 14y^{2}
Variable y cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 14y^{2}.
2y^{2}-8=14y^{2}\times 6-2y^{4}\times 14
To multiply powers of the same base, add their exponents. Add 2 and 2 to get 4.
2y^{2}-8=84y^{2}-2y^{4}\times 14
Multiply 14 and 6 to get 84.
2y^{2}-8=84y^{2}-28y^{4}
Multiply -2 and 14 to get -28.
2y^{2}-8-84y^{2}=-28y^{4}
Subtract 84y^{2} from both sides.
-82y^{2}-8=-28y^{4}
Combine 2y^{2} and -84y^{2} to get -82y^{2}.
-82y^{2}-8+28y^{4}=0
Add 28y^{4} to both sides.
28t^{2}-82t-8=0
Substitute t for y^{2}.
t=\frac{-\left(-82\right)±\sqrt{\left(-82\right)^{2}-4\times 28\left(-8\right)}}{2\times 28}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 28 for a, -82 for b, and -8 for c in the quadratic formula.
t=\frac{82±2\sqrt{1905}}{56}
Do the calculations.
t=\frac{\sqrt{1905}+41}{28} t=\frac{41-\sqrt{1905}}{28}
Solve the equation t=\frac{82±2\sqrt{1905}}{56} when ± is plus and when ± is minus.
y=\frac{\sqrt{\frac{\sqrt{1905}+41}{7}}}{2} y=-\frac{\sqrt{\frac{\sqrt{1905}+41}{7}}}{2}
Since y=t^{2}, the solutions are obtained by evaluating y=±\sqrt{t} for positive t.