Solve for y
y = -\frac{19}{8} = -2\frac{3}{8} = -2.375
Graph
Share
Copied to clipboard
2\left(2y+1\right)=3\left(3\times 2+1\right)+12y
Multiply both sides of the equation by 6, the least common multiple of 3,2.
4y+2=3\left(3\times 2+1\right)+12y
Use the distributive property to multiply 2 by 2y+1.
4y+2=3\left(6+1\right)+12y
Multiply 3 and 2 to get 6.
4y+2=3\times 7+12y
Add 6 and 1 to get 7.
4y+2=21+12y
Multiply 3 and 7 to get 21.
4y+2-12y=21
Subtract 12y from both sides.
-8y+2=21
Combine 4y and -12y to get -8y.
-8y=21-2
Subtract 2 from both sides.
-8y=19
Subtract 2 from 21 to get 19.
y=\frac{19}{-8}
Divide both sides by -8.
y=-\frac{19}{8}
Fraction \frac{19}{-8} can be rewritten as -\frac{19}{8} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}