Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{2x-x^{2}}{\left(x-3\right)^{2}}+\frac{x^{2}-12x+20}{\left(x-3\right)\left(x+9\right)}
Factor x^{2}-6x+9. Factor x^{2}+6x-27.
\frac{\left(2x-x^{2}\right)\left(x+9\right)}{\left(x+9\right)\left(x-3\right)^{2}}+\frac{\left(x^{2}-12x+20\right)\left(x-3\right)}{\left(x+9\right)\left(x-3\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-3\right)^{2} and \left(x-3\right)\left(x+9\right) is \left(x+9\right)\left(x-3\right)^{2}. Multiply \frac{2x-x^{2}}{\left(x-3\right)^{2}} times \frac{x+9}{x+9}. Multiply \frac{x^{2}-12x+20}{\left(x-3\right)\left(x+9\right)} times \frac{x-3}{x-3}.
\frac{\left(2x-x^{2}\right)\left(x+9\right)+\left(x^{2}-12x+20\right)\left(x-3\right)}{\left(x+9\right)\left(x-3\right)^{2}}
Since \frac{\left(2x-x^{2}\right)\left(x+9\right)}{\left(x+9\right)\left(x-3\right)^{2}} and \frac{\left(x^{2}-12x+20\right)\left(x-3\right)}{\left(x+9\right)\left(x-3\right)^{2}} have the same denominator, add them by adding their numerators.
\frac{2x^{2}+18x-x^{3}-9x^{2}+x^{3}-3x^{2}-12x^{2}+36x+20x-60}{\left(x+9\right)\left(x-3\right)^{2}}
Do the multiplications in \left(2x-x^{2}\right)\left(x+9\right)+\left(x^{2}-12x+20\right)\left(x-3\right).
\frac{-22x^{2}+74x-60}{\left(x+9\right)\left(x-3\right)^{2}}
Combine like terms in 2x^{2}+18x-x^{3}-9x^{2}+x^{3}-3x^{2}-12x^{2}+36x+20x-60.
\frac{-22x^{2}+74x-60}{x^{3}+3x^{2}-45x+81}
Expand \left(x+9\right)\left(x-3\right)^{2}.
\frac{2x-x^{2}}{\left(x-3\right)^{2}}+\frac{x^{2}-12x+20}{\left(x-3\right)\left(x+9\right)}
Factor x^{2}-6x+9. Factor x^{2}+6x-27.
\frac{\left(2x-x^{2}\right)\left(x+9\right)}{\left(x+9\right)\left(x-3\right)^{2}}+\frac{\left(x^{2}-12x+20\right)\left(x-3\right)}{\left(x+9\right)\left(x-3\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-3\right)^{2} and \left(x-3\right)\left(x+9\right) is \left(x+9\right)\left(x-3\right)^{2}. Multiply \frac{2x-x^{2}}{\left(x-3\right)^{2}} times \frac{x+9}{x+9}. Multiply \frac{x^{2}-12x+20}{\left(x-3\right)\left(x+9\right)} times \frac{x-3}{x-3}.
\frac{\left(2x-x^{2}\right)\left(x+9\right)+\left(x^{2}-12x+20\right)\left(x-3\right)}{\left(x+9\right)\left(x-3\right)^{2}}
Since \frac{\left(2x-x^{2}\right)\left(x+9\right)}{\left(x+9\right)\left(x-3\right)^{2}} and \frac{\left(x^{2}-12x+20\right)\left(x-3\right)}{\left(x+9\right)\left(x-3\right)^{2}} have the same denominator, add them by adding their numerators.
\frac{2x^{2}+18x-x^{3}-9x^{2}+x^{3}-3x^{2}-12x^{2}+36x+20x-60}{\left(x+9\right)\left(x-3\right)^{2}}
Do the multiplications in \left(2x-x^{2}\right)\left(x+9\right)+\left(x^{2}-12x+20\right)\left(x-3\right).
\frac{-22x^{2}+74x-60}{\left(x+9\right)\left(x-3\right)^{2}}
Combine like terms in 2x^{2}+18x-x^{3}-9x^{2}+x^{3}-3x^{2}-12x^{2}+36x+20x-60.
\frac{-22x^{2}+74x-60}{x^{3}+3x^{2}-45x+81}
Expand \left(x+9\right)\left(x-3\right)^{2}.