Evaluate
\frac{2\left(2-x\right)\left(11x-15\right)}{\left(x+9\right)\left(x-3\right)^{2}}
Expand
-\frac{2\left(11x^{2}-37x+30\right)}{\left(x+9\right)\left(x-3\right)^{2}}
Graph
Share
Copied to clipboard
\frac{2x-x^{2}}{\left(x-3\right)^{2}}+\frac{x^{2}-12x+20}{\left(x-3\right)\left(x+9\right)}
Factor x^{2}-6x+9. Factor x^{2}+6x-27.
\frac{\left(2x-x^{2}\right)\left(x+9\right)}{\left(x+9\right)\left(x-3\right)^{2}}+\frac{\left(x^{2}-12x+20\right)\left(x-3\right)}{\left(x+9\right)\left(x-3\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-3\right)^{2} and \left(x-3\right)\left(x+9\right) is \left(x+9\right)\left(x-3\right)^{2}. Multiply \frac{2x-x^{2}}{\left(x-3\right)^{2}} times \frac{x+9}{x+9}. Multiply \frac{x^{2}-12x+20}{\left(x-3\right)\left(x+9\right)} times \frac{x-3}{x-3}.
\frac{\left(2x-x^{2}\right)\left(x+9\right)+\left(x^{2}-12x+20\right)\left(x-3\right)}{\left(x+9\right)\left(x-3\right)^{2}}
Since \frac{\left(2x-x^{2}\right)\left(x+9\right)}{\left(x+9\right)\left(x-3\right)^{2}} and \frac{\left(x^{2}-12x+20\right)\left(x-3\right)}{\left(x+9\right)\left(x-3\right)^{2}} have the same denominator, add them by adding their numerators.
\frac{2x^{2}+18x-x^{3}-9x^{2}+x^{3}-3x^{2}-12x^{2}+36x+20x-60}{\left(x+9\right)\left(x-3\right)^{2}}
Do the multiplications in \left(2x-x^{2}\right)\left(x+9\right)+\left(x^{2}-12x+20\right)\left(x-3\right).
\frac{-22x^{2}+74x-60}{\left(x+9\right)\left(x-3\right)^{2}}
Combine like terms in 2x^{2}+18x-x^{3}-9x^{2}+x^{3}-3x^{2}-12x^{2}+36x+20x-60.
\frac{-22x^{2}+74x-60}{x^{3}+3x^{2}-45x+81}
Expand \left(x+9\right)\left(x-3\right)^{2}.
\frac{2x-x^{2}}{\left(x-3\right)^{2}}+\frac{x^{2}-12x+20}{\left(x-3\right)\left(x+9\right)}
Factor x^{2}-6x+9. Factor x^{2}+6x-27.
\frac{\left(2x-x^{2}\right)\left(x+9\right)}{\left(x+9\right)\left(x-3\right)^{2}}+\frac{\left(x^{2}-12x+20\right)\left(x-3\right)}{\left(x+9\right)\left(x-3\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-3\right)^{2} and \left(x-3\right)\left(x+9\right) is \left(x+9\right)\left(x-3\right)^{2}. Multiply \frac{2x-x^{2}}{\left(x-3\right)^{2}} times \frac{x+9}{x+9}. Multiply \frac{x^{2}-12x+20}{\left(x-3\right)\left(x+9\right)} times \frac{x-3}{x-3}.
\frac{\left(2x-x^{2}\right)\left(x+9\right)+\left(x^{2}-12x+20\right)\left(x-3\right)}{\left(x+9\right)\left(x-3\right)^{2}}
Since \frac{\left(2x-x^{2}\right)\left(x+9\right)}{\left(x+9\right)\left(x-3\right)^{2}} and \frac{\left(x^{2}-12x+20\right)\left(x-3\right)}{\left(x+9\right)\left(x-3\right)^{2}} have the same denominator, add them by adding their numerators.
\frac{2x^{2}+18x-x^{3}-9x^{2}+x^{3}-3x^{2}-12x^{2}+36x+20x-60}{\left(x+9\right)\left(x-3\right)^{2}}
Do the multiplications in \left(2x-x^{2}\right)\left(x+9\right)+\left(x^{2}-12x+20\right)\left(x-3\right).
\frac{-22x^{2}+74x-60}{\left(x+9\right)\left(x-3\right)^{2}}
Combine like terms in 2x^{2}+18x-x^{3}-9x^{2}+x^{3}-3x^{2}-12x^{2}+36x+20x-60.
\frac{-22x^{2}+74x-60}{x^{3}+3x^{2}-45x+81}
Expand \left(x+9\right)\left(x-3\right)^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}