Solve for k
k=-\frac{x}{4}+\frac{3}{2}
Solve for x
x=6-4k
Graph
Share
Copied to clipboard
2\left(2x-k\right)-3\left(x-2k\right)=6
Multiply both sides of the equation by 6, the least common multiple of 3,2.
4x-2k-3\left(x-2k\right)=6
Use the distributive property to multiply 2 by 2x-k.
4x-2k-3x+6k=6
Use the distributive property to multiply -3 by x-2k.
x-2k+6k=6
Combine 4x and -3x to get x.
x+4k=6
Combine -2k and 6k to get 4k.
4k=6-x
Subtract x from both sides.
\frac{4k}{4}=\frac{6-x}{4}
Divide both sides by 4.
k=\frac{6-x}{4}
Dividing by 4 undoes the multiplication by 4.
k=-\frac{x}{4}+\frac{3}{2}
Divide 6-x by 4.
2\left(2x-k\right)-3\left(x-2k\right)=6
Multiply both sides of the equation by 6, the least common multiple of 3,2.
4x-2k-3\left(x-2k\right)=6
Use the distributive property to multiply 2 by 2x-k.
4x-2k-3x+6k=6
Use the distributive property to multiply -3 by x-2k.
x-2k+6k=6
Combine 4x and -3x to get x.
x+4k=6
Combine -2k and 6k to get 4k.
x=6-4k
Subtract 4k from both sides.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}