Solve for x
x=-\frac{3a\left(1-a\right)}{3+10a-a^{2}}
a\neq 2\sqrt{7}+5\text{ and }a\neq 5-2\sqrt{7}\text{ and }a\neq 0\text{ and }a\neq -\frac{1}{2}
Solve for a (complex solution)
\left\{\begin{matrix}a=\frac{\sqrt{\left(4x+3\right)\left(28x+3\right)}+10x+3}{2\left(x+3\right)}\text{, }&x\neq -3\text{ and }x\neq -1\\a=-\frac{\sqrt{\left(4x+3\right)\left(28x+3\right)}-10x-3}{2\left(x+3\right)}\text{, }&x\neq 0\text{ and }x\neq -3\\a=-\frac{1}{3}\approx -0.333333333\text{, }&x=-3\end{matrix}\right.
Solve for a
\left\{\begin{matrix}a=\frac{\sqrt{\left(4x+3\right)\left(28x+3\right)}+10x+3}{2\left(x+3\right)}\text{, }&x\geq -\frac{3}{28}\text{ or }\left(x\neq -3\text{ and }x\leq -\frac{3}{4}\text{ and }x\neq -1\right)\\a=-\frac{\sqrt{\left(4x+3\right)\left(28x+3\right)}-10x-3}{2\left(x+3\right)}\text{, }&\left(x\neq -3\text{ and }x\leq -\frac{3}{4}\right)\text{ or }\left(x\neq 0\text{ and }x\geq -\frac{3}{28}\right)\\a=-\frac{1}{3}\approx -0.333333333\text{, }&x=-3\end{matrix}\right.
Graph
Share
Copied to clipboard
\left(6a+3\right)\left(2x-a\right)+9a\left(x+1\right)=a\left(2a+1\right)x
Multiply both sides of the equation by 9a\left(2a+1\right), the least common multiple of 3a,2a+1,9.
12ax-6a^{2}+6x-3a+9a\left(x+1\right)=a\left(2a+1\right)x
Use the distributive property to multiply 6a+3 by 2x-a.
12ax-6a^{2}+6x-3a+9ax+9a=a\left(2a+1\right)x
Use the distributive property to multiply 9a by x+1.
21ax-6a^{2}+6x-3a+9a=a\left(2a+1\right)x
Combine 12ax and 9ax to get 21ax.
21ax-6a^{2}+6x+6a=a\left(2a+1\right)x
Combine -3a and 9a to get 6a.
21ax-6a^{2}+6x+6a=\left(2a^{2}+a\right)x
Use the distributive property to multiply a by 2a+1.
21ax-6a^{2}+6x+6a=2a^{2}x+ax
Use the distributive property to multiply 2a^{2}+a by x.
21ax-6a^{2}+6x+6a-2a^{2}x=ax
Subtract 2a^{2}x from both sides.
21ax-6a^{2}+6x+6a-2a^{2}x-ax=0
Subtract ax from both sides.
20ax-6a^{2}+6x+6a-2a^{2}x=0
Combine 21ax and -ax to get 20ax.
20ax+6x+6a-2a^{2}x=6a^{2}
Add 6a^{2} to both sides. Anything plus zero gives itself.
20ax+6x-2a^{2}x=6a^{2}-6a
Subtract 6a from both sides.
\left(20a+6-2a^{2}\right)x=6a^{2}-6a
Combine all terms containing x.
\left(6+20a-2a^{2}\right)x=6a^{2}-6a
The equation is in standard form.
\frac{\left(6+20a-2a^{2}\right)x}{6+20a-2a^{2}}=\frac{6a\left(a-1\right)}{6+20a-2a^{2}}
Divide both sides by 20a+6-2a^{2}.
x=\frac{6a\left(a-1\right)}{6+20a-2a^{2}}
Dividing by 20a+6-2a^{2} undoes the multiplication by 20a+6-2a^{2}.
x=\frac{3a\left(a-1\right)}{3+10a-a^{2}}
Divide 6a\left(-1+a\right) by 20a+6-2a^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}