Solve for x
x=3
x=12
Graph
Quiz
Quadratic Equation
5 problems similar to:
\frac { 2 x - 7 } { x - 4 } = \frac { 3 x - 2 } { x + 4 }
Share
Copied to clipboard
\left(x+4\right)\left(2x-7\right)=\left(x-4\right)\left(3x-2\right)
Variable x cannot be equal to any of the values -4,4 since division by zero is not defined. Multiply both sides of the equation by \left(x-4\right)\left(x+4\right), the least common multiple of x-4,x+4.
2x^{2}+x-28=\left(x-4\right)\left(3x-2\right)
Use the distributive property to multiply x+4 by 2x-7 and combine like terms.
2x^{2}+x-28=3x^{2}-14x+8
Use the distributive property to multiply x-4 by 3x-2 and combine like terms.
2x^{2}+x-28-3x^{2}=-14x+8
Subtract 3x^{2} from both sides.
-x^{2}+x-28=-14x+8
Combine 2x^{2} and -3x^{2} to get -x^{2}.
-x^{2}+x-28+14x=8
Add 14x to both sides.
-x^{2}+15x-28=8
Combine x and 14x to get 15x.
-x^{2}+15x-28-8=0
Subtract 8 from both sides.
-x^{2}+15x-36=0
Subtract 8 from -28 to get -36.
x=\frac{-15±\sqrt{15^{2}-4\left(-1\right)\left(-36\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 15 for b, and -36 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-15±\sqrt{225-4\left(-1\right)\left(-36\right)}}{2\left(-1\right)}
Square 15.
x=\frac{-15±\sqrt{225+4\left(-36\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-15±\sqrt{225-144}}{2\left(-1\right)}
Multiply 4 times -36.
x=\frac{-15±\sqrt{81}}{2\left(-1\right)}
Add 225 to -144.
x=\frac{-15±9}{2\left(-1\right)}
Take the square root of 81.
x=\frac{-15±9}{-2}
Multiply 2 times -1.
x=-\frac{6}{-2}
Now solve the equation x=\frac{-15±9}{-2} when ± is plus. Add -15 to 9.
x=3
Divide -6 by -2.
x=-\frac{24}{-2}
Now solve the equation x=\frac{-15±9}{-2} when ± is minus. Subtract 9 from -15.
x=12
Divide -24 by -2.
x=3 x=12
The equation is now solved.
\left(x+4\right)\left(2x-7\right)=\left(x-4\right)\left(3x-2\right)
Variable x cannot be equal to any of the values -4,4 since division by zero is not defined. Multiply both sides of the equation by \left(x-4\right)\left(x+4\right), the least common multiple of x-4,x+4.
2x^{2}+x-28=\left(x-4\right)\left(3x-2\right)
Use the distributive property to multiply x+4 by 2x-7 and combine like terms.
2x^{2}+x-28=3x^{2}-14x+8
Use the distributive property to multiply x-4 by 3x-2 and combine like terms.
2x^{2}+x-28-3x^{2}=-14x+8
Subtract 3x^{2} from both sides.
-x^{2}+x-28=-14x+8
Combine 2x^{2} and -3x^{2} to get -x^{2}.
-x^{2}+x-28+14x=8
Add 14x to both sides.
-x^{2}+15x-28=8
Combine x and 14x to get 15x.
-x^{2}+15x=8+28
Add 28 to both sides.
-x^{2}+15x=36
Add 8 and 28 to get 36.
\frac{-x^{2}+15x}{-1}=\frac{36}{-1}
Divide both sides by -1.
x^{2}+\frac{15}{-1}x=\frac{36}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}-15x=\frac{36}{-1}
Divide 15 by -1.
x^{2}-15x=-36
Divide 36 by -1.
x^{2}-15x+\left(-\frac{15}{2}\right)^{2}=-36+\left(-\frac{15}{2}\right)^{2}
Divide -15, the coefficient of the x term, by 2 to get -\frac{15}{2}. Then add the square of -\frac{15}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-15x+\frac{225}{4}=-36+\frac{225}{4}
Square -\frac{15}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-15x+\frac{225}{4}=\frac{81}{4}
Add -36 to \frac{225}{4}.
\left(x-\frac{15}{2}\right)^{2}=\frac{81}{4}
Factor x^{2}-15x+\frac{225}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{15}{2}\right)^{2}}=\sqrt{\frac{81}{4}}
Take the square root of both sides of the equation.
x-\frac{15}{2}=\frac{9}{2} x-\frac{15}{2}=-\frac{9}{2}
Simplify.
x=12 x=3
Add \frac{15}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}