Solve for x
x = \frac{39}{10} = 3\frac{9}{10} = 3.9
Graph
Share
Copied to clipboard
2x-7=\frac{4}{15}\times 3
Multiply both sides by 3.
2x-7=\frac{4\times 3}{15}
Express \frac{4}{15}\times 3 as a single fraction.
2x-7=\frac{12}{15}
Multiply 4 and 3 to get 12.
2x-7=\frac{4}{5}
Reduce the fraction \frac{12}{15} to lowest terms by extracting and canceling out 3.
2x=\frac{4}{5}+7
Add 7 to both sides.
2x=\frac{4}{5}+\frac{35}{5}
Convert 7 to fraction \frac{35}{5}.
2x=\frac{4+35}{5}
Since \frac{4}{5} and \frac{35}{5} have the same denominator, add them by adding their numerators.
2x=\frac{39}{5}
Add 4 and 35 to get 39.
x=\frac{\frac{39}{5}}{2}
Divide both sides by 2.
x=\frac{39}{5\times 2}
Express \frac{\frac{39}{5}}{2} as a single fraction.
x=\frac{39}{10}
Multiply 5 and 2 to get 10.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}