Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(x-4\right)\left(2x-5\right)=\left(x-2\right)\left(-x-2\right)
Variable x cannot be equal to any of the values 2,4 since division by zero is not defined. Multiply both sides of the equation by \left(x-4\right)\left(x-2\right), the least common multiple of x-2,x-4.
2x^{2}-13x+20=\left(x-2\right)\left(-x-2\right)
Use the distributive property to multiply x-4 by 2x-5 and combine like terms.
2x^{2}-13x+20=x\left(-x\right)-2x-2\left(-x\right)+4
Use the distributive property to multiply x-2 by -x-2.
2x^{2}-13x+20=x\left(-x\right)-2x+2x+4
Multiply -2 and -1 to get 2.
2x^{2}-13x+20=x\left(-x\right)+4
Combine -2x and 2x to get 0.
2x^{2}-13x+20-x\left(-x\right)=4
Subtract x\left(-x\right) from both sides.
2x^{2}-13x+20-x\left(-x\right)-4=0
Subtract 4 from both sides.
2x^{2}-13x+20-x^{2}\left(-1\right)-4=0
Multiply x and x to get x^{2}.
2x^{2}-13x+20+x^{2}-4=0
Multiply -1 and -1 to get 1.
3x^{2}-13x+20-4=0
Combine 2x^{2} and x^{2} to get 3x^{2}.
3x^{2}-13x+16=0
Subtract 4 from 20 to get 16.
x=\frac{-\left(-13\right)±\sqrt{\left(-13\right)^{2}-4\times 3\times 16}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, -13 for b, and 16 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-13\right)±\sqrt{169-4\times 3\times 16}}{2\times 3}
Square -13.
x=\frac{-\left(-13\right)±\sqrt{169-12\times 16}}{2\times 3}
Multiply -4 times 3.
x=\frac{-\left(-13\right)±\sqrt{169-192}}{2\times 3}
Multiply -12 times 16.
x=\frac{-\left(-13\right)±\sqrt{-23}}{2\times 3}
Add 169 to -192.
x=\frac{-\left(-13\right)±\sqrt{23}i}{2\times 3}
Take the square root of -23.
x=\frac{13±\sqrt{23}i}{2\times 3}
The opposite of -13 is 13.
x=\frac{13±\sqrt{23}i}{6}
Multiply 2 times 3.
x=\frac{13+\sqrt{23}i}{6}
Now solve the equation x=\frac{13±\sqrt{23}i}{6} when ± is plus. Add 13 to i\sqrt{23}.
x=\frac{-\sqrt{23}i+13}{6}
Now solve the equation x=\frac{13±\sqrt{23}i}{6} when ± is minus. Subtract i\sqrt{23} from 13.
x=\frac{13+\sqrt{23}i}{6} x=\frac{-\sqrt{23}i+13}{6}
The equation is now solved.
\left(x-4\right)\left(2x-5\right)=\left(x-2\right)\left(-x-2\right)
Variable x cannot be equal to any of the values 2,4 since division by zero is not defined. Multiply both sides of the equation by \left(x-4\right)\left(x-2\right), the least common multiple of x-2,x-4.
2x^{2}-13x+20=\left(x-2\right)\left(-x-2\right)
Use the distributive property to multiply x-4 by 2x-5 and combine like terms.
2x^{2}-13x+20=x\left(-x\right)-2x-2\left(-x\right)+4
Use the distributive property to multiply x-2 by -x-2.
2x^{2}-13x+20=x\left(-x\right)-2x+2x+4
Multiply -2 and -1 to get 2.
2x^{2}-13x+20=x\left(-x\right)+4
Combine -2x and 2x to get 0.
2x^{2}-13x+20-x\left(-x\right)=4
Subtract x\left(-x\right) from both sides.
2x^{2}-13x+20-x^{2}\left(-1\right)=4
Multiply x and x to get x^{2}.
2x^{2}-13x+20+x^{2}=4
Multiply -1 and -1 to get 1.
3x^{2}-13x+20=4
Combine 2x^{2} and x^{2} to get 3x^{2}.
3x^{2}-13x=4-20
Subtract 20 from both sides.
3x^{2}-13x=-16
Subtract 20 from 4 to get -16.
\frac{3x^{2}-13x}{3}=-\frac{16}{3}
Divide both sides by 3.
x^{2}-\frac{13}{3}x=-\frac{16}{3}
Dividing by 3 undoes the multiplication by 3.
x^{2}-\frac{13}{3}x+\left(-\frac{13}{6}\right)^{2}=-\frac{16}{3}+\left(-\frac{13}{6}\right)^{2}
Divide -\frac{13}{3}, the coefficient of the x term, by 2 to get -\frac{13}{6}. Then add the square of -\frac{13}{6} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{13}{3}x+\frac{169}{36}=-\frac{16}{3}+\frac{169}{36}
Square -\frac{13}{6} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{13}{3}x+\frac{169}{36}=-\frac{23}{36}
Add -\frac{16}{3} to \frac{169}{36} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{13}{6}\right)^{2}=-\frac{23}{36}
Factor x^{2}-\frac{13}{3}x+\frac{169}{36}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{13}{6}\right)^{2}}=\sqrt{-\frac{23}{36}}
Take the square root of both sides of the equation.
x-\frac{13}{6}=\frac{\sqrt{23}i}{6} x-\frac{13}{6}=-\frac{\sqrt{23}i}{6}
Simplify.
x=\frac{13+\sqrt{23}i}{6} x=\frac{-\sqrt{23}i+13}{6}
Add \frac{13}{6} to both sides of the equation.