Solve for x
x=\frac{4}{7}\approx 0.571428571
Graph
Share
Copied to clipboard
2\left(2x-5\right)=3\left(5x-4\right)+6\left(x-2\right)\times \frac{1}{2}
Variable x cannot be equal to 2 since division by zero is not defined. Multiply both sides of the equation by 6\left(x-2\right), the least common multiple of 3x-6,2x-4,2.
4x-10=3\left(5x-4\right)+6\left(x-2\right)\times \frac{1}{2}
Use the distributive property to multiply 2 by 2x-5.
4x-10=15x-12+6\left(x-2\right)\times \frac{1}{2}
Use the distributive property to multiply 3 by 5x-4.
4x-10=15x-12+3\left(x-2\right)
Multiply 6 and \frac{1}{2} to get 3.
4x-10=15x-12+3x-6
Use the distributive property to multiply 3 by x-2.
4x-10=18x-12-6
Combine 15x and 3x to get 18x.
4x-10=18x-18
Subtract 6 from -12 to get -18.
4x-10-18x=-18
Subtract 18x from both sides.
-14x-10=-18
Combine 4x and -18x to get -14x.
-14x=-18+10
Add 10 to both sides.
-14x=-8
Add -18 and 10 to get -8.
x=\frac{-8}{-14}
Divide both sides by -14.
x=\frac{4}{7}
Reduce the fraction \frac{-8}{-14} to lowest terms by extracting and canceling out -2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}