Solve for x
x = \frac{5}{2} = 2\frac{1}{2} = 2.5
Graph
Share
Copied to clipboard
2x-5-3=6\left(x-3\right)
Multiply both sides of the equation by 3.
2x-8=6\left(x-3\right)
Subtract 3 from -5 to get -8.
2x-8=6x-18
Use the distributive property to multiply 6 by x-3.
2x-8-6x=-18
Subtract 6x from both sides.
-4x-8=-18
Combine 2x and -6x to get -4x.
-4x=-18+8
Add 8 to both sides.
-4x=-10
Add -18 and 8 to get -10.
x=\frac{-10}{-4}
Divide both sides by -4.
x=\frac{5}{2}
Reduce the fraction \frac{-10}{-4} to lowest terms by extracting and canceling out -2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}