Solve for x
x = -\frac{9}{4} = -2\frac{1}{4} = -2.25
Graph
Share
Copied to clipboard
2\left(2x-5\right)+4\times 5=1
Variable x cannot be equal to 3 since division by zero is not defined. Multiply both sides of the equation by 4\left(x-3\right), the least common multiple of 2x-6,x-3,4x-12.
4x-10+4\times 5=1
Use the distributive property to multiply 2 by 2x-5.
4x-10+20=1
Multiply 4 and 5 to get 20.
4x+10=1
Add -10 and 20 to get 10.
4x=1-10
Subtract 10 from both sides.
4x=-9
Subtract 10 from 1 to get -9.
x=\frac{-9}{4}
Divide both sides by 4.
x=-\frac{9}{4}
Fraction \frac{-9}{4} can be rewritten as -\frac{9}{4} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}