Solve for x
x=-\frac{4\left(y-5\right)}{y+10}
y\neq -10
Solve for y
y=\frac{10\left(2-x\right)}{x+4}
x\neq -4
Graph
Share
Copied to clipboard
5\left(2x-4\right)=-\left(x+4\right)y
Variable x cannot be equal to -4 since division by zero is not defined. Multiply both sides of the equation by 5\left(x+4\right), the least common multiple of x+4,5.
10x-20=-\left(x+4\right)y
Use the distributive property to multiply 5 by 2x-4.
10x-20=-\left(xy+4y\right)
Use the distributive property to multiply x+4 by y.
10x-20=-xy-4y
To find the opposite of xy+4y, find the opposite of each term.
10x-20+xy=-4y
Add xy to both sides.
10x+xy=-4y+20
Add 20 to both sides.
\left(10+y\right)x=-4y+20
Combine all terms containing x.
\left(y+10\right)x=20-4y
The equation is in standard form.
\frac{\left(y+10\right)x}{y+10}=\frac{20-4y}{y+10}
Divide both sides by y+10.
x=\frac{20-4y}{y+10}
Dividing by y+10 undoes the multiplication by y+10.
x=\frac{4\left(5-y\right)}{y+10}
Divide -4y+20 by y+10.
x=\frac{4\left(5-y\right)}{y+10}\text{, }x\neq -4
Variable x cannot be equal to -4.
5\left(2x-4\right)=-\left(x+4\right)y
Multiply both sides of the equation by 5\left(x+4\right), the least common multiple of x+4,5.
10x-20=-\left(x+4\right)y
Use the distributive property to multiply 5 by 2x-4.
10x-20=-\left(xy+4y\right)
Use the distributive property to multiply x+4 by y.
10x-20=-xy-4y
To find the opposite of xy+4y, find the opposite of each term.
-xy-4y=10x-20
Swap sides so that all variable terms are on the left hand side.
\left(-x-4\right)y=10x-20
Combine all terms containing y.
\frac{\left(-x-4\right)y}{-x-4}=\frac{10x-20}{-x-4}
Divide both sides by -x-4.
y=\frac{10x-20}{-x-4}
Dividing by -x-4 undoes the multiplication by -x-4.
y=-\frac{10\left(x-2\right)}{x+4}
Divide -20+10x by -x-4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}