Solve for x
x = \frac{25}{11} = 2\frac{3}{11} \approx 2.272727273
Graph
Share
Copied to clipboard
-4\left(2x-4\right)=3\left(x-3\right)
Variable x cannot be equal to 3 since division by zero is not defined. Multiply both sides of the equation by 4\left(x-3\right), the least common multiple of 3-x,4.
-8x+16=3\left(x-3\right)
Use the distributive property to multiply -4 by 2x-4.
-8x+16=3x-9
Use the distributive property to multiply 3 by x-3.
-8x+16-3x=-9
Subtract 3x from both sides.
-11x+16=-9
Combine -8x and -3x to get -11x.
-11x=-9-16
Subtract 16 from both sides.
-11x=-25
Subtract 16 from -9 to get -25.
x=\frac{-25}{-11}
Divide both sides by -11.
x=\frac{25}{11}
Fraction \frac{-25}{-11} can be simplified to \frac{25}{11} by removing the negative sign from both the numerator and the denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}